996 resultados para Permeability testing
Resumo:
A range of seven test methods was used to assess the effectiveness of curing on C30 and C50 Portland cement concretes. Curing was by formwork retention, wrapping in wet hessian or wrapping in polythene for periods of between one and seven days. Specimens from each mix were also subjected to both air and water storage.
Resumo:
Sub-surface radar is becoming increasingly popular as an inspection method. Interpretation can be enhanced if uncertainties about the dielectric properties of the concretes under investigation are removed. The need for reliable data to identify possible variations of the dielectric properties of different concrete mixes and their condition on site has led to a systematic laboratory based experimental programme under the auspices of a major European Commission (Brite-Euram m Framework 4) funded project. Some key results from this recently completed work are presented in this paper with practical implications related to field surveys of structural concrete. (C) 2001 Elsevier Science Ltd. Ah rights reserved.
Resumo:
A full-scale seven-storey in-situ advanced reinforced concrete building frame was constructed in the Building Research Establishment's Cardington laboratory encompassing a range of different concrete mixes and construction techniques. This provided an opportunity to use in-situ non-destructive test methods, namely Lok and CAPO tests, on a systematic basis during the construction of the building. They were used in conjunction with both standard and temperature-matched cube specimens to assess their practicality and their individual capabilities under field conditions. Results have been analysed and presented to enable comparisons of the performance of the individual test methods employed.
Resumo:
The use of pulsed radar for investigating the integrity of structural elements is gaining popularity and becoming firmly established as a nondestructive test method in civil engineering. Difficulties can often arise in the interpretation of results obtained, particularly where internal details are relatively complex. One approach that can be used to understand and evaluate radar results is through numerical modeling of signal propagation and reflection. By comparing the results of a numerical modeling with those from field measurements, engineers can gain valuable insight into the probable features embedded beneath the surface of a structural element. This paper discusses a series of numerical techniques for modeling subsurface radar and compares the precision of the results with those taken from real field data. It is found that more complex problems require more sophisticated analysis techniques to obtain realistic results, with a consequential increase in the computational resources to carry out the modeling.