918 resultados para Peptides tumoraux
Resumo:
Guanylyl cyclase C (GCC), a member of the family of membrane bound guanylyl cyclases is the receptor for the heat-stable enterotoxin (ST) peptides and the guanylin family of endogenous peptides. GCC is activated upon ligand binding to increase intracellular cGMP levels, which in turn activates other downstream signalling events in the cell. GCC is also activated in vitro by nonionic detergents. We have used the T84 cell line as a model system to investigate the regulation of GCC activity by ATP. Ligand-stimulated GCC activity is potentiated in the presence of ATP, whereas detergent-stimulated activity is inhibited. The potentiation of GCC activity by ATP is dependent on the presence of Mg2+ ions, and is probably brought about by a direct binding of Mg-ATP to GCC. The protein kinase-like domain of GCC, which has earlier been shown to play a critical role in the regulation of GCC activity, may be a possible site for the binding of Mg-ATP to GCC.
Resumo:
To correlate the Raman frequencies of the amide I and III bands to beta-turn structures, three peptides shown to contain beta-turn structure by x-ray diffraction and NMR were examined. The compounds examined were tertiary (formula: see text). The amide I band of these compounds is seen at 1,668, 1,665, and 1,677 cm-1, and the amide III band appears at 1,267, 1,265, and 1,286 cm-1, respectively. Thus, it is concluded that the amide I band for type III beta-turn structure appears in the range between 1,665 and 1,677 cm-1 and the amide III band between 1,265 and 1,286 cm-1.
Resumo:
Miniaturization of analytical instrumentation is attracting growing interest in response to the explosive demand for rapid, yet sensitive analytical methods and low-cost, highly automated instruments for pharmaceutical and bioanalyses and environmental monitoring. Microfabrication technology in particular, has enabled fabrication of low-cost microdevices with a high degree of integrated functions, such as sample preparation, chemical reaction, separation, and detection, on a single microchip. These miniaturized total chemical analysis systems (microTAS or lab-on-a-chip) can also be arrayed for parallel analyses in order to accelerate the sample throughput. Other motivations include reduced sample consumption and waste production as well as increased speed of analysis. One of the most promising hyphenated techniques in analytical chemistry is the combination of a microfluidic separation chip and mass spectrometer (MS). In this work, the emerging polymer microfabrication techniques, ultraviolet lithography in particular, were exploited to develop a capillary electrophoresis (CE) separation chip which incorporates a monolithically integrated electrospray ionization (ESI) emitter for efficient coupling with MS. An epoxy photoresist SU-8 was adopted as structural material and characterized with respect to its physicochemical properties relevant to chip-based CE and ESI/MS, namely surface charge, surface interactions, heat transfer, and solvent compatibility. As a result, SU-8 was found to be a favorable material to substitute for the more commonly used glass and silicon in microfluidic applications. In addition, an infrared (IR) thermography was introduced as direct, non-intrusive method to examine the heat transfer and thermal gradients during microchip-CE. The IR data was validated through numerical modeling. The analytical performance of SU-8-based microchips was established for qualitative and quantitative CE-ESI/MS analysis of small drug compounds, peptides, and proteins. The CE separation efficiency was found to be similar to that of commercial glass microchips and conventional CE systems. Typical analysis times were only 30-90 s per sample indicating feasibility for high-throughput analysis. Moreover, a mass detection limit at the low-attomole level, as low as 10E+5 molecules, was achieved utilizing MS detection. The SU-8 microchips developed in this work could also be mass produced at low cost and with nearly identical performance from chip to chip. Until this work, the attempts to combine CE separation with ESI in a chip-based system, amenable to batch fabrication and capable of high, reproducible analytical performance, have not been successful. Thus, the CE-ESI chip developed in this work is a substantial step toward lab-on-a-chip technology.
Resumo:
Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.
Resumo:
Peptides possessing antibiotic activity, isolated from microbial sources, have been the subject of intensive structural and biological investigation over the past two decades.
Resumo:
The presence of folded solution conformations in the peptides Boc-Ala-(Aib-Ala)2-OMe, Boc-Val-(Aib-Val) 2-OMe, Boc-Ala-(Aib-Ala)3-OMe and Boc-Val-(Aib-Val)3-OMe has been established by 270MHz 1H NMR. Intramolecularly H-bonded NH groups have been identified using temperature and solvent dependence of NH chemical shifts and paramagnetic radical induced broadening of NH resonances. Both pentapeptides adopt 310 helical conformations possessing 3 intramolecular H-bonds in CDCl3 and (CD3)2SO. The heptapeptides favour helical structures with 5 H-bonds in CDCl3. In (CD3)2SO only 4 H-bonds are readily detected.
Resumo:
Alamethicin and several related microbial polypeptides, which contain a high proportion of agr-aminoisobutyric acid (Aib) residues, possess the ability to modify the permeability properties of phospholipid bilayer membranes. Alamethicin induces excitability phenomena in model membranes and has served as an excellent model for the study of voltage sensitive transmembrane channels. This review summarizes various aspects of the structural chemistry and membrane modifying properties of alamethicin and related Alb containing peptides. The presence of Aib residues in these sequences, constrains the polypeptides to 310 or agr-helical conformations. Functional membrane channels are formed by aggregation of cylindrical peptide helices, which span the lipid bilayer, forming a scaffolding for an aqueous column across the membrane. After consideration of the available data on the conductance characteristics of alamethicin channels, a working, hypothesis for a channel model is outlined. Channel aggregates in the lipid phase may be stabilized by intermolecular hydrogen bonding, involving a central glutamine residue and also by interactions between the macro-dipoles of proximate peptide helices. Fluctuations between different conductance states are rationalized by transitions between states of different aggregation and hence altered dimensions of the aqueous core or by changes in net dipole moment of the aggregate. Ion fluxes through the channel may also be affected by the electric field within the aqueous core.
Resumo:
The suzukacillin fragments, Boc-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (14), Boc-Ala-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (16G) and the completely apolar 16-residue peptide in which the glutamine residue has been replaced by alanine (16A) have been studied by 270 MHz 1H-HMR, in C2HCl3 and (C2H3)2SO solution. Intramolecularly hydrogen-bonded NH groups have been identified by temperature and solvent dependence of chemical shifts. Peptides 14 and 16A adopt folded 310 helical conformations stabilized by 11 and 13 hydrogen bonds, respectively. In peptide 16G there are 12 intramolecular hydrogen bonds, with the glycine NH being solvent-exposed, in contrast to 14 and 16A.
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
The conformations of Boc-l-Phe-(AiB)3-OH (1) and Boc-l-Phe-(Aib)3-OMe (2) which correspond to the amino terminal sequence of the emerimicins and antiamoebins have been studied in solution using 270 MHz 1H n.m.r. In dimethyl sulphoxide solution both peptides show the presence of two strongly solvent shielded Aib NH groups, consistent with a consecutive β-turn conformation, involving the Aib(3) and Aib(4) NH groups in intramolecular 4 → I hydrogen bonds. This folded conformation is maintained for 2 in chloroform solution. Nuclear Overhauser effect studies provide evidence for a Type II Phe-Aib β-turn. An X-ray diffraction study of Boc-(d,l)-Phe-(Aib)3-OH establishes a single type III(III′) β-turn conformation with Aib(2)-Aib(3) as the corner residues. A single intramolecular 4 → I hydrogen bond between Phe(I) CO and Aib(4) NH groups is observed in the crystal. The solution conformation may incorporate a consecutive type II-III′ structure for the Phe(1)-Aib(2)-Aib(3) segment, with the initial type II β-turn being destabilized by intermolecular interactions in the solid state.
Resumo:
Artifacts in the form of cross peaks have been observed along two- and three-quantum diagonals in single-quantum two-dimensional correlated (COSY) spectra of several peptides and oligonucleotides. These have been identified as due to the presence of a non-equilibrium state of kind I (a state describable by populations which differ from equilibrium) of strongly coupled spins carried over from one experiment to the next in the COSY algorithm.
Resumo:
Phosphocholine (PCho) is an important substituent of surface structures expressed by a number of bacterial pathogens. Its role in virulence has been investigated in several species, in which it has been shown to play a role in bacterial adhesion to mucosal surfaces, in resistance to antimicrobial peptides, or in sensitivity to complement-mediated killing. The lipopolysaccharide (LPS) structure of Pasteurella multocida strain Pm70, whose genome sequence is known, has recently been determined and does not contain PCho. However, LPS structures from the closely related, virulent P. multocida strains VP161 and X-73 were shown to contain PCho on their terminal galactose sugar residues. To determine if PCho was involved in the virulence of P. multocida, we used subtractive hybridization of the VP161 genome against the Pm70 genome to identify a four-gene locus (designated pcgDABC) which we show is required for the addition of the PCho residues to LPS. The proteins predicted to be encoded by pcgABC showed identity to proteins involved in choline uptake, phosphorylation, and nucleotide sugar activation of PCho. We constructed a P. multocida VP161 pcgC mutant and demonstrated that this strain produces LPS that lacks PCho on the terminal galactose residues. This pcgC mutant displayed reduced in vivo growth in a chicken infection model and was more sensitive to the chicken antimicrobial peptide fowlicidin-1 than the wild-type P. multocida strain
Resumo:
Pivaloyl-L-Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of beta -turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II beta-turn conformations are about 2 kcal mol-1 more stable than Type III structures. A crystallographic study has established the Type II beta-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, beta = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II -turn conformation is stabilized by an intramolecular 4 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are Pro = -57.8°, Pro = 139.3°, Aib = 61.4°, and Aib = 25.1°. The Type II beta-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.
Resumo:
The technique of 13C-NMR spectroscopy of oriented systems to problems of biological importance has been suggested and used to investigate non-planar distortions in substituted amides—models for peptides. The studies in conjunction with the proton magnetic resonance data on 5N-[13C]methyl[13C]formamide oriented in a nematic solvent provide all the direct dipolar couplings between the interacting nuclei in the system. When the 13C- and the 1H-NMR experiments are performed under non-identical conditions, 22 different direct dipolar couplings are obtained. It is demostrated that they can be used to determine unambiguously non-planar distortions around the nitrogen atom together with other geometrical data and the molecular order.
Resumo:
Pro-Gly segments in peptides and proteins are prone to adopt the 0-turn conformation. This paper reports experimental data for the presence of this conformation in a linear tripeptide N-acetyl-L-prolylglycyl-L-phenylalanineb oth in the solid state and in solution. X-ray diffraction data on the tripeptide crystal show that it exists in the type I1 0-turn conformation. CD and proton NMR data show that this conformation persists in trifluoroethanol and methanol solutions in equilibrium with the nonhydrogen-bonded structures. Isomerization around the acetyl-prolyl bond is seen to take place in dimethyl sulfoxide solutions of the tripeptide.