1000 resultados para Pellegrini, Pellegrino, called Tibaldi, b.1527.
Resumo:
Cathepsin B, TGF-beta, signaltransduction, apoptosis, migration, Smad
Resumo:
3rd ed.
Resumo:
Background:Previous reports have inferred a linear relationship between LDL-C and changes in coronary plaque volume (CPV) measured by intravascular ultrasound. However, these publications included a small number of studies and did not explore other lipid markers.Objective:To assess the association between changes in lipid markers and regression of CPV using published data.Methods:We collected data from the control, placebo and intervention arms in studies that compared the effect of lipidlowering treatments on CPV, and from the placebo and control arms in studies that tested drugs that did not affect lipids. Baseline and final measurements of plaque volume, expressed in mm3, were extracted and the percentage changes after the interventions were calculated. Performing three linear regression analyses, we assessed the relationship between percentage and absolute changes in lipid markers and percentage variations in CPV.Results:Twenty-seven studies were selected. Correlations between percentage changes in LDL-C, non-HDL-C, and apolipoprotein B (ApoB) and percentage changes in CPV were moderate (r = 0.48, r = 0.47, and r = 0.44, respectively). Correlations between absolute differences in LDL-C, non‑HDL-C, and ApoB with percentage differences in CPV were stronger (r = 0.57, r = 0.52, and r = 0.79). The linear regression model showed a statistically significant association between a reduction in lipid markers and regression of plaque volume.Conclusion:A significant association between changes in different atherogenic particles and regression of CPV was observed. The absolute reduction in ApoB showed the strongest correlation with coronary plaque regression.
Resumo:
Pt. 2
Resumo:
v.3:pt.4 (1910)
Resumo:
Pts. 1 & 2
Resumo:
Pt. 1
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
Magdeburg, Univ., Medizin. Fak., Diss., 2007
Resumo:
Magdeburg, Univ., Med. Fak., Diss., 2008
Resumo:
This paper deals with problems on population genetics in Hymenoptera and particularly in social Apidae. 1) The studies on populations of Hymenoptera were made according to the two basic types of reproduction: endogamy and panmixia. The populations of social Apinae have a mixed method of reproduction with higher percentage of panmixia and a lower of endogamy. This is shown by the following a) males can enter any hive in swarming time; b) males of Meliponini are expelled from hives which does not need them, and thus, are forced to look for some other place; c) Meliponini males were seen powdering themselves with pollen, thus becoming more acceptable in any other hive. The panmixia is not complete owing to the fact that the density of the breeding population as very low, even in the more frequent species as low as about 2 females and 160 males per reproductive area. We adopted as selection values (or survival indices) the expressions according to Brieger (1948,1950) which may be summarised as follows; a population: p2AA + ²pq Aa + q2aa became after selection: x p2AA + 2pq Aa + z q²aa. For alge-braics facilities Brieger divided the three selective values by y giving thus: x/y p2 AA + y/y 2 pq Aa + z/y q²aa. He called x/y of RA and z/y of Ra, that are survival or selective index, calculated in relation to the heterozygote. In our case all index were calculated in relation to the heterozygote, including the ones for haploid males; thus we have: RA surveval index of genotype AA Ra surveval index of genotype aa R'A surveval index of genotype A R'a surveval index of genotype a 1 surveval index of genotype Aa The index R'A ande R'a were equalized to RA and Ra, respectively, for facilities in the conclusions. 2) Panmitic populations of Hymenoptera, barring mutations, migrations and selection, should follow the Hardy-Weinberg law, thus all gens will be present in the population in the inicial frequency (see Graphifc 1). 3) Heterotic genes: If mutation for heterotic gene ( 1 > RA > Ra) occurs, an equilibrium will be reached in a population when: P = R A + Ra - 2R²a _____________ (9) 2(R A + Ra - R²A - R²a q = R A + Ra - 2R²A _____________ (10) 2(R A + Ra - R²A - R²a A heterotic gene in an hymenopteran population may be maintained without the aid of new mutation only if the survival index of the most viable mutant (RA) does not exced the limiting value given by the formula: R A = 1 + √1+Ra _________ 4 If RA has a value higher thah the one permitted by the formula, then only the more viable gene will remain present in the population (see Graphic 10). The only direct proof for heterotic genes in Hymenoptera was given by Mackensen and Roberts, who obtained offspring from Apis mellefera L. queens fertilized by their own sons. Such inbreeding resulted in a rapid loss of vigor the colony; inbred lines intercrossed gave a high hybrid vigor. Other fats correlated with the "heterosis" problem are; a) In a colony M. quadrifasciata Lep., which suffered severely from heat, the percentage of deths omong males was greater .than among females; b) Casteel and Phillips had shown that in their samples (Apis melifera L). the males had 7 times more abnormalities tian the workers (see Quadros IV to VIII); c) just after emerging the males have great variation, but the older ones show a variation equal to that of workers; d) The tongue lenght of males of Apis mellifera L., of Bombus rubicundus Smith (Quadro X), of Melipona marginata Lep. (Quadro XI), and of Melipona quadrifasciata Lep. Quadro IX, show greater variationthan that of workers of the respective species. If such variation were only caused by subviables genes a rapid increasse of homozigoty for the most viable alleles should be expected; then, these .wild populations, supposed to be in equilibrium, could .not show such variability among males. Thus we conclude that heterotic genes have a grat importance in these cases. 4) By means of mathematical models, we came to the conclusion tht isolating genes (Ra ^ Ra > 1), even in the case of mutations with more adaptability, have only the opor-tunity of survival when the population number is very low (thus the frequency of the gene in the breeding population will be large just after its appearence). A pair of such alleles can only remain present in a population when in border regions of two races or subspecies. For more details see Graphics 5 to 8. 5) Sex-limited genes affecting only females, are of great importance toHymenoptera, being subject to the same limits and formulas as diploid panmitic populations (see formulas 12 and 13). The following examples of these genes were given: a) caste-determining genes in the genus Melipona; b) genes permiting an easy response of females to differences in feeding in almost all social Hymenoptera; c) two genes, found in wild populations, one in Trigona (Plebéia) mosquito F. SMITH (quadro XII) and other in Melipona marginata marginata LEP. (Quadro XIII, colonies 76 and 56) showing sex-limited effects. Sex-limited genes affecting only males do not contribute to the plasticity or genie reserve in hymenopteran populations (see formula 14). 6) The factor time (life span) in Hymenoptera has a particular importance for heterotic genes. Supposing one year to be the time unit and a pair of heterotic genes with respective survival indice equal to RA = 0, 90 and Ra = 0,70 to be present; then if the life time of a population is either one or two years, only the more viable gene will remain present (see formula 11). If the species has a life time of three years, then both alleles will be maintained. Thus we conclude that in specis with long lif-time, the heterotic genes have more importance, and should be found more easily. 7) The colonies of social Hymenoptera behave as units in competition, thus in the studies of populations one must determine the survival index, of these units which may be subdivided in indice for egg-laying, for adaptive value of the queen, for working capacity of workers, etc. 8) A study of endogamic hymenopteran populations, reproduced by sister x brother mating (fig. 2), lead us to the following conclusions: a) without selection, a population, heterozygous for one pair of alleles, will consist after some generations (theoretically after an infinite number of generation) of females AA fecundated with males A and females aa fecundated with males a (see Quadro I). b) Even in endogamic population there is the theoretical possibility of the presence of heterotic genes, at equilibrium without the aid of new mutations (see Graphics 11 and 12), but the following! conditions must be satisfied: I - surveval index of both homozygotes (RA e Ra) should be below 0,75 (see Graphic 13); II - The most viable allele must riot exced the less viable one by more than is permited by the following formula (Pimentel Gomes 1950) (see Gra-fic 14) : 4 R5A + 8 Ra R4A - 4 Ra R³A (Ra - 1) R²A - - R²a (4 R²a + 4 Ra - 1) R A + 2 R³a < o Considering these two conditions, the existance of heterotic genes in endogamic populations of Hymenoptera \>ecames very improbable though not - impossible. 9) Genie mutation offects more hymenopteran than diploid populations. Thus we have for lethal genes in diploid populations: u = q2, and in Hymenoptera: u = s, being u the mutation ratio and s the frequency of the mutant in the male population. 10) Three factors, important to competition among species of Meliponini were analysed: flying capacity of workers, food gathering capacity of workers, egg-laying of the queen. In this connection we refer to the variability of the tongue lenght observed in colonies from several localites, to the method of transporting the pollen in the stomach, from some pots (Melliponi-ni storage alveolus) to others (e. g. in cases of pillage), and to the observation that the species with the most populous hives are almost always the most frequent ones also. 11) Several defensive ways used for Meliponini to avoid predation are cited, but special references are made upon the camouflage of both hive (fig. 5) and hive entrance (fig. 4) and on the mimetism (see list in page ). Also under the same heading we described the method of Lestrimelitta for pillage. 12) As mechanisms important for promoting genetic plasticity of hymenopteran species we cited: a) cytological variations and b) genie reserve. As to the former, duplications and numerical variations of chromosomes were studied. Diprion simile ATC was cited as example for polyploidy. Apis mellife-ra L. (n = 16) also sugests polyploid origen since: a) The genus Melipona, which belongs to a" related tribe, presents in all species so far studied n = 9 chromosomes and b) there occurs formation of dyads in the firt spermatocyte division. It is su-gested that the origin of the sex-chromosome of Apis mellifera It. may be related to the possible origin of diplo-tetraploidy in this species. With regards to the genie reserve, several possible types of mutants were discussed. They were classified according to their survival indices; the heterotic and neutral mutants must be considered as more important for the genie reserve. 13) The mean radius from a mother to a daghter colony was estimated as 100 meters. Since the Meliponini hives swarm only once a year we may take 100 meters a year as the average dispersion of female Meliponini in ocordance to data obtained from Trigona (tetragonisca) jaty F. SMITH and Melipona marginata LEP., while other species may give different values. For males the flying distance was roughly estimated to be 10 times that for females. A review of the bibliography on Meliponini swarm was made (pg. 43 to 47) and new facts added. The population desity (breeding population) corresponds in may species of Meliponini to one male and one female per 10.000 square meters. Apparently the males are more frequent than the females, because there are sometimes many thousands, of males in a swarm; but for the genie frequency the individuals which have descendants are the ones computed. In the case of Apini and Meliponini, only one queen per hive and the males represented by. the spermatozoos in its spermateca are computed. In Meliponini only one male mate with the queen, while queens of Apis mellijera L. are fecundated by an average of about 1, 5 males. (Roberts, 1944). From the date cited, one clearly sees that, on the whole, populations of wild social bees (Meliponini) are so small that the Sewall Wright effect may become of great importance. In fact applying the Wright's formula: f = ( 1/aN♂ + 1/aN♀) (1 - 1/aN♂ + 1/aN♀) which measures the fixation and loss of genes per generation, we see that the fixation or loss of genes is of about 7% in the more frequent species, and rarer species about 11%. The variation in size, tergite color, background color, etc, of Melipona marginata Lep. is atributed to this genetic drift. A detail, important to the survival of Meliponini species, is the Constance of their breeding population. This Constance is due to the social organization, i. e., to the care given to the reproductive individuals (the queen with its sperm pack), to the way of swarming, to the food storage intended to control variations of feeding supply, etc. 14) Some species of the Meliponini are adapted to various ecological conditions and inhabit large geographical areas (e. g. T. (Tetragonisca jaty F. SMITH), and Trigona (Nanno-trigona testaceicornis LEP.) while others are limited to narrow regions with special ecological conditions (e. g. M. fuscata me-lanoventer SCHWARZ). Other species still, within the same geographical region, profit different ecological conditions, as do M. marginata LEP. and M. quadrifasciata LEP. The geographical distribution of Melipona quadrifasciata LEP. is different according to the subspecies: a) subsp anthidio-des LEP. (represented in Fig. 7 by black squares) inhabits a region fron the North of the S. Paulo State to Northeastern Brazil, ,b) subspecies quadrifasciata LEP., (marked in Fig. 7 with black triangles) accurs from the South of S. Paulo State to the middle of the State of Rio Grande do Sul (South Brazil). In the margined region between these two areas of distribution, hi-brid colonies were found (Fig. 7, white circles); they are shown with more details in fig. 8, while the zone of hybridization is roughly indicated in fig. 9 (gray zone). The subspecies quadrifasciata LEP., has 4 complete yellow bands on the abdominal tergites while anthidioides LEP. has interrupted ones. This character is determined by one or two genes and gives different adaptative properties to the subspecies. Figs. 10 shows certains meteorological isoclines which have aproximately the same configuration as the limits of the hybrid zone, suggesting different climatic adaptabilities for both genotypes. The exis-tance of a border zone between the areas of both subspecies, where were found a high frequency of hybrids, is explained as follows: being each subspecies adapted to a special climatic zone, we may suppose a poor adaptation of either one in the border region, which is also a region of intermediate climatic conditions. Thus, the hybrids, having a combination of the parent qualities, will be best adapted to the transition zone. Thus, the hybrids will become heterotic and an equilibrium will be reached with all genotypes present in the population in the border region.
Resumo:
In order to study the action of herbicides - sodium salt, amine salt and ester of 2,4-D, TCA and 2,4,5-T a preliminary experiment for pre-emergence weed control was corried out, and the corresponding results are given in table I and II. The corn used in the experiments was of the flint type 1A 3531. The loam soil on which the experiment has been carried out is called "terra roxa". All treatments were highly significant when compared with the check plots, except the 2B one in the control of broad leaf weeds, and 4B in the control of grass weeds. Among these treatments there are no significant differences. But we note the following: (table I). a) treatments of higher concentrations were superior to lower ones. b) the treatments which gave the best control for broad leaf weeds were in the following decreasing order: 1A, 5A and 3A. For grass weeds, they were 5A, 1A and 3A. c) the amine 2,4-D (600 grs. per hectare) supplied very good control when we get into consideration that on the acid basis, it was in very low concentration. d) TCA in high concentration affected the germination, growth and yield, in the lower one it did not show good control of weeds, especially of grasses. It is not suitable for pre-emergence control in corn. e) 2,4,5-T was not better than the 2,4-D products. As it is much more expensive than the others, economically its use in pre-emergence weed control in corn is not praticable. f) all the products used controled grass weeds as well as broad leaf ones; this show the superiority of the pre-emergence treatment method over that of post-emergence. g) Even a dose as strong as the treatment 1A (3.400g. of 2,4-D acid per hectare) did not damage corn production (table II). h) the superiority noted in the production of all the treatments with the exception of 2A, which damaged the plants, we atribute to the lack of competion between corn and weeds; all chek-plots suffered this competition, because they were not Probably, there was, also, hormonial effect of 2,4-D on the corn plant. Not withstanding the fact that the present experiment has been successful, we think that new researches are necessary, especially with the purpose of studying factors as climate and soil which in other countries, interferred with the success of the pre-emergence weed control.