861 resultados para Pathogen emergence
Resumo:
The fungus Rhizoctonia solani is a soil borne pathogen that causes damage to various crops. The chemical control, when managed incorrectly, can be harmful to the environment, which makes the study of alternative control important. This study aimed to evaluate the ability of different doses of Liquid swine manure (LSM), with and without the retention of gases, at different soil pH levels, to control R. solani in beet. An inoculum of the fungus R. solani was on rice grains, which had been previously sterilised. The experiments were set up in a greenhouse in a completely randomised block design, arranged in a three-factor 2 x 2 x 5 scheme, comprising of soil pH levels (4.8 and 7.2) x with and without gas retention x LSM dose (0, 5, 10, 15 and 20%), with four replications per treatment. To setup the experiments, 4 kg of soil of each pH level were packed separately into plastic bags. Subsequently, the soil of each bag was infested with 15 g of fungus inoculum/kg of soil, and moistened as necessary. After seven days of infestation of the soil with the pathogen the different doses of LSM were incorporated separately into the bags, the bags designated as the gas retention treatment were closed, while those designated as the gas release treatment were left open. After seven days, part of the soil from each bag was packed separately into 16 cells of 128 cell Styrofoam trays, which were then seeded with two beet seeds per cell. The other part of the soil was placed in 2 litre pots, to conduct the quantification of microbial activity, through the method of CO2 release, 21 days after the experiment was setup. Seedling emergence and damping-off evaluations were performed daily for 21 days consecutively. The data was submitted to analysis of variance, and when significant were submitted to regression analysis or Tukey at 5% probability of error. The experiments were repeated twice. According to the results obtained, there was a suppressive effect of LSM on R. solani. For the variable emergence, the 10% dose of LSM resulted in the largest number of emerging plants in the two soil pH levels studied, whether or not gas was retained. Seedling dampingoff decreased with increasing volumes of LSM incorporated into the soil. The soil with the pH level of 7.2 presented less seedling damping-off than the soil with a pH level of 4.8. The retention of gases provided greater control of R. solani in the higher LSM doses and in soil with a pH level of 7.2. Also noted in this study that there was a significant increase in microbial activity with increasing doses of LSM when applied to soil with pH levels of 4.8 and 7.2. Based on these results, it was concluded that the 10% dose of LSM provided the best control of R. solani without harming seedling emergence.
Resumo:
A study was carried out over a two year period (2009/2010 and 2012/2013) on an experimental farm in the Alentejo region (Beja), in southern Portugal where rainfed malt barley (Hordeum distichum L.) is sown at the end of autumn or beginning of winter (November– December). The aim of this experiment was to study the efficiency of the herbicide iodosulfuron-methyl-sodium to control post-emergence broadleaved weeds in this cereal crop. The malt barley crop was established using no-till farming. This technology provides the necessary machine bearing capacity of the soil to assure the post-emergence application of herbicides at two diferente weed development stages. The herbicide iodosulfuron-methyl-sodium was applied at three doses (5.0, 7.5, and 10.0 g a. i. · ha–1) and at two different broadleaved weed development stages (3 to 4 and 6 to 7 pairs of leaves), that also corresponded to two diferente crop development stages (beginning of tillering and complete tillering). The results indicated that early herbicide application timing provided a significantly higher efficiency for all the applied herbicide doses, but this better weed control was not reflected in a higher crop grain yield. The lack of a higher crop grain yield was probably due to a crop phytotoxicity of the herbicide, when used at an early application timing.
Resumo:
bbd18 is a differentially expressed Borrelia burgdorferi gene that is transcribed at almost undetectable levels in spirochetes grown in vitro but dramatically upregulated during tick infection. The gene also displays low yet detectable expression at various times in tissues of murine hosts. As the gene product bears no homology to known proteins, its biological significance remains enigmatic. To understand the gene function, we created isogenic bbd18-deletion mutants as well as genetically-complemented isolates from an infectious wild-type B. burgdorferi strain. Compared to parental isolates, bbd18 mutants - but not complemented spirochetes - displayed slower in vitro growth. The bbd18 mutants also reflect significantly reduced ability to persist or remain undetectable both in immunocompetent and SCID mice, yet were able to survive in ticks. This suggests BBD18 function is essential in mammalian hosts but redundant in the arthropod vector. Notably, although bbd18 expression and in vitro growth defects are restored in the complemented isolates, their phenotype is similar to the mutants - being unable to persist in mice but able to survive in ticks. Despite low expression in cultured wild-type B. burgdorferi, bbd18 deletion downregulated several genes. Interestingly, expression of some, including ospD and bbi39, could be complemented, while that of others could not be restored via bbd18 re-expression. Correspondingly, bbd18 mutants displayed altered production of several proteins, and similar to RNA levels, some were restored in the bbd18 complement and others not. To understand how bbd18 deletion results in apparently permanent and noncomplementable phenotypic defects, we sought to genetically disturb the DNA topology surrounding the bbd18 locus without deleting the gene. Spirochetes with an antibiotic cassette inserted downstream of the gene, between bbd17 and bbd18, were significantly attenuated in mice, while a similar upstream insertion, between bbd18 and bbd19, did not affect infectivity, suggesting that an unidentified cis element downstream of bbd18 may encode a virulence-associated factor critical for infection.
Resumo:
When we study optimism in children, we note the temporary emergence of a bias that leads them to make optimistic predictions. In this study we intend to learn more about changes that can be observed in the optimistic bias of 6- to 12-year old schoolchildren when they predict future events, and in the way they justify those predictions. A total of 77 pupils participated in this study; we evaluated each one of them individually with a Piagetian interview, asking them to formulate predictions about a series of hypothetical situations. After analyzing whether a child's prediction implied that the situation would maintain itself or would change for better or for worse, we classified the justifications they provided for their predictions. Results show that these subjects regarded positive change as more likely in the case of psychological or hybrid events than for purely biological ones, and that younger children tended to display a greater bias in favor of the likelihood of positive change. These younger children justified their predictions stating that nature or the passing of time could be responsible for the changes, without needing further intervention on the part of other agents. Older children, on the other hand, tended to provide similar kinds of explanations to justify their expectation of stasis.
Resumo:
Previous work has drawn attention to the relative absence of British Chinese voices in public culture. No one is more aware of this invisibility than British-born Chinese people themselves. Since 2000 the emergence of Internet discussion sites produced by British Chinese young people has provided an important forum for many of them to grapple with questions concerning their identities, experiences and status in Britain. In this paper we explore the ways in which Internet usage by British-born Chinese people has facilitated forms of self-expression, collective identity production and social and political action. This examination of British Chinese websites raises important questions about inclusion and exclusion, citizenship, participation and the development of a sense of belonging in Britain, issues which are usually overlooked in relation to a group which appears to be well integrated and successful in higher education.
Resumo:
International audience
Resumo:
The European shellfish industry enjoys a privileged position on the global scene. Its social dimension is essential, as it employs a high number of people in more than 8000 companies, mostly micro-companies. Shellfish production in Europe is little diversified and mainly relies on the industrially produced mussels, oysters and clams. Over the recent years, this sector has grown more slowly than other fish farming sectors, notably because it depends a great deal on the environmental quality and the emergence of diseases. Mortality events, linked to pathogen organisms such as viruses, bacteria and parasites (protozoa), tend to weaken the production’s sustainability. In this context, the European project VIVALDI (PreVenting and mItigating farmed biVALve DIseases) aims at increasing the sustainability and competitiveness of the shellfish industry in Europe, developing tools and approaches with a view to better preventing and controlling marine bivalve diseases. VIVALDI is a 4-years European Horizon 2020 project coordinated by Ifremer (2016-2020): 21 mostly European, public and private partners are involved, representing the diversity of the European shellfish industry landscape
Resumo:
Ultra-slow fluctuations (0.01-0.1 Hz) are a feature of intrinsic brain activity of as yet unclear origin. We propose a candidate mechanism based on retrograde endocannabinoid signaling in a synaptically coupled network of excitatory neurons. This is known to cause depolarization-induced suppression of excitation (DISE), which we model phenomenologically. We construct emergent network oscillations in a globally coupled network and show that for strong synaptic coupling DISE can lead to a synchronized population burst at the frequencies of resting brain rhythms.
Resumo:
Trichosporon spp. has gained importance as the cases of immunosuppressed patients increase. The genus Trichosporon includes 6 species of clinical relevance that may cause supericial infections, such as white piedra and onychomycosis, or deep and invasive infections with high mortality rates. These microorganisms have a broad geographical distribution and some species are resistant to antifungal drugs in vitro. The present paper is a review on the virulence factors, associated infections, and in vitro susceptibility of the species with the highest incidence as pathogenic agents in humans.
Resumo:
The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.
Resumo:
Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. ^ The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. ^ Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.^
Resumo:
The aim of this study was to evaluate if the treatments with ceftiofur and amoxicillin are risk factors for the emergence of cephalosporin resistant (CR) E. coli in a pig farm during the rearing period. One hundred 7-day-old piglets were divided into two groups, a control (n = 50) group and a group parenterally treated with ceftiofur (n = 50). During the fattening period, both groups were subdivided in two. A second treatment with amoxicillin was administered in feed to two of the four groups, as follows: group 1 (untreated, n = 20), group 2 (treated with amoxicillin, n = 26), group 3 (treated with ceftiofur, n = 20), and group 4 (treated with ceftiofur and amoxicillin, n = 26). During treatment with ceftiofur, fecal samples were collected before treatment (day 0) and at days 2, 7, 14, 21, and 42 posttreatment, whereas with amoxicillin, the sampling was extended 73 days posttreatment. CR E. coli bacteria were selected on MacConkey agar with ceftriaxone (1 mg/liter). Pulsed-field gel electrophoresis (PFGE), MICs of 14 antimicrobials, the presence of cephalosporin resistance genes, and replicon typing of plasmids were analyzed. Both treatments generated an increase in the prevalence of CR E. coli, which was statistically significant in the treated groups. Resistance diminished after treatment. A total of 47 CR E. coli isolates were recovered during the study period; of these, 15 contained blaCTX-M-1, 10 contained blaCTX-M-14, 4 contained blaCTX-M-9, 2 contained blaCTX-M-15, and 5 contained blaSHV-12. The treatment with ceftiofur and amoxicillin was associated with the emergence of CR E. coli during the course of the treatment. However, by the time of finishing, CR E. coli bacteria were not recovered from the animals.
Resumo:
UNLABELLED Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCCmec) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCCmec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production. IMPORTANCE Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production.
Resumo:
Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.