1000 resultados para Paraná River
Resumo:
O objetivo deste trabalho foi estudar as mudanças no comportamento espectral da cultura da soja, por meio dos perfis espectrais temporais dos índices de vegetação NDVI e GVI, expressos em diferentes valores físicos: fator de reflectância bidirecional (FRB) aparente, de superfície e normalizado derivados de imagens Landsat 5/TM. Foi monitorada área de cultura de soja localizada próxima ao município de Cascavel - PR, utilizando cinco imagens da safra de 2004/2005, sendo realizados nessas imagens os procedimentos de transformação radiométrica, correção atmosférica e normalização, determinando valores físicos dos fatores de reflectância bidirecional aparente, de superfície e normalizado, respectivamente. Com o intuito de caracterizar a resposta espectral da biomassa da soja, geraram-se imagens referentes aos índices de vegetação NDVI e GVI. Como resultado, a cultura mostrou-se diferente para os tratamentos dos fatores de reflectância bidirecional aparente, de superfície e de normalização. Por meio dos perfis médios espectrais do NDVI e GVI, foi possível acompanhar todo o ciclo da cultura da soja, caracterizando o seu desenvolvimento. Observou-se, ainda, que os dados provenientes do fator de reflectância bidirecional normalizado descaracterizaram a curva espectral da cultura da soja, principalmente em meio à fase de crescimento vegetativo, na data de 9-12-2004.
Resumo:
O trabalho teve o objetivo de avaliar modelos lineares de regressão entre resposta espectral e produtividade em soja, na escala regional. Para isso, foram monitorados 36 municípios do oeste do Paraná, utilizando cinco imagens do satélite Landsat 5/TM da safra de 2004/2005. Foram realizados os procedimentos de transformação radiométrica e correção atmosférica nas imagens, determinando valores físicos das refletâncias aparente e de superfície. Posteriormente, foram calculados os índices de vegetação NDVI e GVI, os quais, por meio de regressões lineares simples e múltiplas, compararam-se com as produtividades oficiais dos municípios, obtidas das estatísticas IBGE. Aplicou-se também uma análise de diagnóstico, para detectar pontos influentes e de colinearidade. Os resultados mostraram que a média dos valores de NDVI e GVI de todas as imagens foi mais bem relacionada com a produtividade do que para cada data separadamente. O uso de regressões múltiplas com os dois índices, em todas as datas, propiciou melhores resultados de relação com a produtividade.
Resumo:
Understanding hydrosedimental behavior of a watershed is essential for properly managing and using its hydric resources. The objective of this study was to verify the feasibility of the alternative procedure for the indirect determination of the sediment key curve using a turbidimeter. The research was carried out on the São Francisco Falso River, which is situated in the west of the state of Paraná on the left bank of ITAIPU reservoir. The direct method was applied using a DH-48 sediment suspended sampler. The indirect method consisted of the use of a linigraph and a turbidimeter. Based on the results obtained, it was concluded that the indirect method using a turbidimeter showed to be fully feasible, since it gave a power function-type mathematical model equal of the direct method. Furthermore, the average suspended sediment discharge into the São Francisco Falso River during the 2006/2007 harvest was calculated at 7.26 metric t day-1.
Resumo:
The search for low subjectivity area estimates has increased the use of remote sensing for agricultural monitoring and crop yield prediction, leading to more flexibility in data acquisition and lower costs comparing to traditional methods such as census and surveys. Low spatial resolution satellite images with higher frequency in image acquisition have shown to be adequate for cropland mapping and monitoring in large areas. The main goal of this study was to map the Summer crops in the State of Paraná, Brazil, using 10-day composition of NDVI SPOT Vegetation data for 2005/2006, 2006/2007 and 2007/2008 cropping seasons. For this, a supervised digital classification method with Parallelepiped algorithm in multitemporal RGB image composites was used, in order to generate masks of Summer cultures for each 10-day composition. Accuracy assessment was performed using Kappa index, overall accuracy and Willmott's concordance index, resulting in good levels of accuracy. This methodology allowed the accomplishment, with free and low resolution data, of the mapping of Summer cultures at State level.
Resumo:
The transposition of the São Francisco River is considered one of the greatest engineering works in Brazil of all time since it will cross an extensive agricultural region of continental dimensions, involving environmental impacts, water, soil, irrigation, water payment and other multidisciplinary themes. Taking into account its importance, this subject was incorporated into a discipline of UFSCar (Federal University of São Carlos - Brazil) named "Pollution and Environmental Impacts". It was noted strong reaction against the project, even before the presentation. To allow a critical analysis, the first objective was to compile the main technical data and environmental impacts. The second objective was to detect the three most important aspects that cause reaction, concluding for the following reasons: assumption that the volume of water to be transferred was much greater than it actually is proposed in the project; lack of knowledge about similar project already done in Brazil; the idea that the artificial canal to be built was much broader than that proposed by the project. The participants' opinion about "volume to be transferred" was raised quantitatively four times: 2-undergraduate students; 1-graduate; 1-outside community. The average resulted 14 times larger than that proposed in the project, significant according to t-test. It was concluded that the reaction to water transfer project is due in part to the ignorance combined with a preconceived idea that tend to overestimate the magnitude of environmental impacts.
Resumo:
The edafoclimatic conditions of the Brazilian semiarid region favor the water loss by surface runoff. The state of Ceará, almost completely covered by semiarid, has developed public policies for the construction of dams in order to attend the varied water demand. Several hydrological models were developed to support decisive processes in the complex management of reservoirs. This study aimed to establish a methodology for obtaining a georeferenced database suitable for use as input data in hydrological modeling in the semiarid of Ceará. It was used images of Landsat satellite and SRTM Mission, and soil maps of the state of Ceará. The Landsat images allowed the determination of the land cover and the SRTM Mission images, the automatic delineation of hydrographic basins. The soil type was obtained through the soil map. The database was obtained for Jaguaribe River hydrographic basin, in the state of Ceará, and is applicable to hydrological modeling based on the Curve Number method for estimating the surface runoff.
Resumo:
To optimize the use of pesticides, several countries have carried out periodic inspections in agricultural sprayers. In Brazil, knowing the conditions of this machinery canguide researches and investments in guidelines for its use and maintenance. The objective of this study was to verify the state of sprayer maintenance used in the North of the state of Paraná, in Brazil. Several sprayer items were evaluated, such as: presence, status and scale of the manometer, status of the hose, status of the anti-drip component, presence of leaks, status of the bar, status of the filters, state of the spraying nozzles and errors in the targeted flow rate. Machines were named as approved when there was no failure in any item evaluated. The factor that caused the biggest level of reprove among the machines was incorrect scale of manometers, which reproved 84.55% of the machines evaluated. Other outstanding factor was the incorrect flow rate in 75.5% of the tested machines. Only one unit was approved from the total of 110 evaluated sprayers.
Resumo:
This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.
Resumo:
Este trabalho teve o objetivo de avaliar o desempenho dos modelos CLIGEN, LARS-WG e PGECLIMA_R na simulação de séries diárias de temperatura máxima do ar para localidades do Estado do Paraná. Foram utilizadas séries históricas de temperatura máxima do ar das localidades de Campo Mourão, Castro, Curitiba, Ivaí, Londrina, Maringá e Paranaguá. Foram geradas cinco séries de temperatura máxima do ar para cada modelo, nas localidades avaliadas, que foram confrontadas com as respectivas séries históricas. O processo de validação foi composto de análises estatísticas através de testes de significância (sobre as médias mensais (teste t), sobre a variância das médias mensais (teste F), sobre a forma das distribuições de frequência (teste K-S)), de gráficos de tendência anual, de tabelas com os índices "r" de Pearson, "d" de Willmott e c de Camargo-Sentelhas. Na simulação de temperatura máxima do ar, os modelos PGECLIMA_R e LARS-WG não diferiram em desempenho, obtendo poucas rejeições e bons resultados nos índices c, d e r. No entanto, o CLIGEN obteve resultado abaixo do esperado, superestimando as temperaturas máximas do ar em dias úmidos e, subestimando-as em dias secos, nas localidades avaliadas.
Resumo:
O presente trabalho realizou uma análise de agrupamentos espacial por meio da estatística multivariada, no intuito de investigar a relação entre a produtividade da soja e as seguintes variáveis agrometeorológicas: precipitação pluvial, temperatura média do ar, radiação solar global e índice local de Moran (LISA) da produtividade. O estudo foi realizado com os dados das safras dos anos agrícolas de 2000/2001 a 2007/2008 da região oeste do Estado do Paraná. A identificação do número adequado de clusters para cada ano-safra foi obtida utilizando a minimização de desvios. O estudo mostrou a formação de grupos de municípios utilizando as similaridades das variáveis em análise. A análise de agrupamento foi um instrumento útil para melhor gestão das atividades de produção da agricultura, em função de que, com o agrupamento, foi possível estabelecer similaridades que proporcionem parâmetros para melhor gestão dos processos de produção que traga, quantitativa e qualitativamente, resultados almejados pelo agricultor.
Resumo:
The objective of this study consisted on mapping the use and soil occupation and evaluation of the quality of irrigation water used in Salto do Lontra, in the state of Paraná, Brazil. Images of the satellite SPOT-5 were used to perform the supervised classification of the Maximum Likelihood algorithm - MAXVER, and the water quality parameters analyzed were pH, EC, HCO3-, Cl-, PO4(3-), NO3-, turbidity, temperature and thermotolerant coliforms in two distinct rainfall periods. The water quality data were subjected to statistical analysis by the techniques of PCA and FA, to identify the most relevant variables in assessing the quality of irrigation water. The characterization of soil use and occupation by the classifier MAXVER allowed the identification of the following classes: crops, bare soil/stubble, forests and urban area. The PCA technique applied to irrigation water quality data explained 53.27% of the variation in water quality among the sampled points. Nitrate, thermotolerant coliforms, temperature, electrical conductivity and bicarbonate were the parameters that best explained the spatial variation of water quality.
Resumo:
Agroindustries are major consumers of water. However, to adapt to environmental trends and be competitive in the market, they have sought rational use of water through water management in their activities. Cleaner Production can result in economic, environmental and social benefits, and in actions that promote reduction in water consumption. This case study was conducted in a slaughterhouse and poultry cold storage processing plant and aimed to identify points of excessive water consumption, and to propose alternatives for managing water resources by reducing consumption. Consumption data are presented in relation to the processing stages with alternatives proposed for the rational use of water, such as closure of mains water during shift changes. Following the implementation of recommendations, a reduction in water consumption of approximately 11,137 m³ per month was obtained, which equates to a savings of US$ 99,672 per year. From this study, it was concluded that the company under review could develop various improvement actions and make an important contribution to the preservation of water resources in the region where it operates.
Resumo:
Este trabalho apresenta o Modelo de Regressão Espacial Autorregressivo Misto (SAR) e Modelo do Erro Espacial (CAR) no intuito de investigar a associação entre a produtividade da soja e as variáveis agrometeorológicas relacionadas à precipitação pluvial, temperatura média e radiação solar global. O estudo foi realizado com os dados das safras dos anos agrícolas de 2005/2006 a 2007/2008, da região oeste do estado do Paraná. Como os dados agrometeorológicos estão disponíveis apenas para oito municípios da região em estudo, as estimativas foram obtidas por meio do uso de Polígonos de Thiessen. A estimativa de parâmetros dos modelos ajustados foi obtida utilizando o método de Máxima Verossimilhança. A avaliação do desempenho dos modelos foi realizada com base no coeficiente de determinação (R²), no máximo valor do logaritmo da função verossimilhança e no critério de informação bayesiano de Schwarz (BIC). Este estudo também permitiu verificar a correlação e autocorrelação espacial entre a produtividade da soja e os elementos agrometeorológicos, por meio da análise espacial de área, usando de técnicas como o índice I de Moran Global e Local uni e bivariado, e os testes de significância. O estudo pôde demonstrar que, por meio dos indicadores de desempenho utilizados, os modelos SAR e CAR ofereceram melhores resultados em relação ao modelo de regressão múltipla clássica.
Resumo:
In the current study, we performed a soybean production spatial distribution analysis in Paraná State. Seven crop-year data, from 2003-04 to 2009-10, obtained from the Paraná Department of Agriculture and Supply (SEAB) were used to develop a Boxmap for each crop-year, show soybean production throughout this time interval. Moran's index was used to measure spatial autocorrelation among municipalities at an aggregate level, while LISA index local correlation. For each index, different contiguity matrix and order were used and there was a significance level study. As a result, we have showed spatial relationship among cities regarding the production, which allowed the indication of high and low production clusters. Finally, identifying main soybean-producing cities, what may provide supply chain members with information to strengthen the crop production in Paraná.
Resumo:
This study aimed to apply mathematical models to the growth of Nile tilapia (Oreochromis niloticus) reared in net cages in the lower São Francisco basin and choose the model(s) that best represents the conditions of rearing for the region. Nonlinear models of Brody, Bertalanffy, Logistic, Gompertz, and Richards were tested. The models were adjusted to the series of weight for age according to the methods of Gauss, Newton, Gradiente and Marquardt. It was used the procedure "NLIN" of the System SAS® (2003) to obtain estimates of the parameters from the available data. The best adjustment of the data were performed by the Bertalanffy, Gompertz and Logistic models which are equivalent to explain the growth of the animals up to 270 days of rearing. From the commercial point of view, it is recommended that commercialization of tilapia from at least 600 g, which is estimated in the Bertalanffy, Gompertz and Logistic models for creating over 183, 181 and 184 days, and up to 1 Kg of mass , it is suggested the suspension of the rearing up to 244, 244 and 243 days, respectively.