949 resultados para Parametric Vibration
Resumo:
The research trend for harvesting energy from the ambient vibration sources has moved from using a linear resonant generator to a non-linear generator in order to improve on the performance of a linear generator; for example, the relatively small bandwidth, intolerance to mistune and the suitability of the device for low-frequency applications. This article presents experimental results to illustrate the dynamic behaviour of a dual-mode non-linear energy-harvesting device operating in hardening and bi-stable modes under harmonic excitation. The device is able to change from one mode to another by altering the negative magnetic stiffness by adjusting the separation gap between the magnets and the iron core. Results for the device operating in both modes are presented. They show that there is a larger bandwidth for the device operating in the hardening mode compared to the equivalent linear device. However, the maximum power transfer theory is less applicable for the hardening mode due to occurrence of the maximum power at different frequencies, which depends on the non-linearity and the damping in the system. The results for the bi-stable mode show that the device is insensitive to a range of excitation frequencies depending upon the input level, damping and non-linearity.
Resumo:
This article concerns the free vibration of a single-degree-of-freedom (SDOF) system with three types of nonlinear damping. One system considered is where the spring and the damper are connected to the mass so that they are orthogonal, and the vibration is in the direction of the spring. It is shown that, provided the displacement is small, this system behaves in a similar way to the conventional SDOF system with cubic damping, in which the spring and the damper are connected so they act in the same direction. For completeness, these systems are compared with a conventional SDOF system with quadratic damping. By transforming all the equations of motion of the systems so that the damping force is proportional to the product of a displacement dependent term and velocity, then all the systems can be directly compared. It is seen that the system with cubic damping is worse than that with quadratic damping for the attenuation of free vibration. [DOI: 10.1115/1.4005010]
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper is concerned with feedback vibration control of a lightly damped flexible structure that has a large number of well-separated modes. A single active electrical dynamic absorber is used to reduce a particular single vibration mode selectively or multiple modes simultaneously. The absorber is realized electrically by feeding back the structural acceleration at one position to a collocated piezoceramic patch actuator via a controller consisting of one or several second order lowpass filters. A simple analytical method is presented to design a modal control filter that is optimal in that it maximally flattens the mobility frequency response of the target mode, as well as robust in that it works within a prescribed maximum control spillover of 2 dB at all frequencies. Experiments are conducted with a free-free beam to demonstrate its ability to control any single mode optimally and robustly. It is also shown that an active absorber with multiple such filters can effectively control multiple modes simultaneously.
Resumo:
This paper presents a simple but practical feedback control method to suppress the vibration of a flexible structure in the frequency range between 10 Hz and 1 kHz. A dynamic vibration absorber is designed for this, which has a natural frequency of 100 Hz and a normalized bandwidth (twice the damping ratio) of 9.9. The absorber is realized electrically by feeding back the structural acceleration at one position on the host structure to a collocated piezoceramic patch actuator via an analog controller consisting of a second-order lowpass filter. This absorber is equivalent to a single degree-of-freedom mechanical oscillator consisting of a serially connected mass-spring-damper system. A first-order lowpass filter is additionally used to improve stability at very high frequencies. Experiments were conducted on a free-free beam embedded with a piezoceramic patch actuator and an accelerometer at its center. It is demonstrated that the single absorber can simultaneously suppress multiple vibration modes within the control bandwidth. It is further shown that the control system is robust to slight changes in the plant. The method described can be applied to many other practical structures, after retuning the absorber parameters for the structure under control.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper investigates a novel design approach for a vibration isolator for use in space structures. The approach used can particularly be applicable for aerospace structures that support high precision instrumentation such as satellite payloads. The isolator is a space-frame structure that is folded in on itself to act as a mechanical filter over a defined frequency range. The absence of viscoelastic elements in such a mounting makes the design suitable for use in a vacuum and in high temperature or harsh environments with no risk of drift in alignment of the structure. The design uses a genetic algorithm based geometric optimisation routine to maximise passive vibration isolation, and this is hybridised with a geometric feasibility search. To complement the passive isolation system, an active system is incorporated in the design to add damping. Experimental work to validate the feasibility of the approach is also presented, with the active/passive structure achieving transmissibility of about 19 dB over a range of 1-250 Hz. It is shown here that the use of these novel anti-vibration mountings has no or little consequent weight and cost penalties whilst maintaining their effectiveness with the vibration levels. The approach should pave the way for the design of anti-vibration mountings that can be used between most pieces of equipment and their supporting structure. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Temporomandibular joint (TMJ) sounds are frequent in patients. The aim of this study was to analyze patients with clicking at the end of opening and at the beginning of closing their mouths treated by muscular exercises through chewing and by occlusal splints. Fifteen patients with clinically verified clicking and TMJ and 15 patients without sounds were selected by the Research Diagnostic Criteria for Temporomandibular Disorders. They were submitted to electrovibratography at consultation and 60 and 120 days of treatment by occlusal splints and exercises. Patients demonstrated significant reduction of TMJ sounds after treatment, but vibration intensity was not similar with that of the control group after 120 days.
Resumo:
The authors M. Bellamy and R.E. Mickens in the article "Hopf bifurcation analysis of the Lev Ginzburg equation" published in Journal of Sound and Vibration 308 (2007) 337-342, claimed that this differential equation in the plane can exhibit a limit cycle. Here we prove that the Lev Ginzburg differential equation has no limit cycles. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We analyze the dynamical coupling between energy sources and structural response that must not be ignored in real engineering problems, since real motors have limited output power. We present models of certain problems that render descriptions that are closer to real situations encountered in practice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Avaliar os parâmetros de cães anestesiados com diferentes protocolos de fármacos dissociativos por infusão intravenosa contínua. MÉTODOS: Foram utilizados 30 cães, machos e fêmeas, clinicamente sadios, distribuídos aleatoriamente em três grupos (G1,G2 e G3) (*)). em G1 utilizou-se levomepromazina como medicação pré-anestésica (MPA), midazolam-cetamina pela via intravenosa em bolus para indução e midazolam-cetamina em infusão intravenosa contínua por 60 minutos para manutenção. em G2 procedeu-se da mesma forma que em G1 elevando-se, porém, a dose de midazolam durante a manutenção. em G3 repetiu-se o tratamento empregado em G2, acrescentando-se a xilazina à manutenção. Após a indução, iniciou-se imediatamente a manutenção anestésica, realizando-se aferições, 15 minutos depois da MPA, em intervalos de 10 minutos, durante a manutenção (M0 a M7). RESULTADOS: em G3 ocorreu bradicardia, bloqueio átrio-ventricular, bradipnéia e hipoxemia e em G1 e G2, discreta hipotensão. CONCLUSÃO: A via intravenosa contínua apresentou vantagens quanto a: não oscilação dos parâmetros e redução no período de recuperação anestésica. A elevação da dose de midazolam resultou em discretas variações paramétricas, estas, acentuadas pelo uso da xilazina, que causou hipoxemia, bradiarritmia, diminuição da freqüência respiratória e volume minuto.