905 resultados para Parallel algorithm
Resumo:
This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.
Resumo:
The personalised conditioning system (PCS) is widely studied. Potentially, it is able to reduce energy consumption while securing occupants’ thermal comfort requirements. It has been suggested that automatic optimised operation schemes for PCS should be introduced to avoid energy wastage and discomfort caused by inappropriate operation. In certain automatic operation schemes, personalised thermal sensation models are applied as key components to help in setting targets for PCS operation. In this research, a novel personal thermal sensation modelling method based on the C-Support Vector Classification (C-SVC) algorithm has been developed for PCS control. The personal thermal sensation modelling has been regarded as a classification problem. During the modelling process, the method ‘learns’ an occupant’s thermal preferences from his/her feedback, environmental parameters and personal physiological and behavioural factors. The modelling method has been verified by comparing the actual thermal sensation vote (TSV) with the modelled one based on 20 individual cases. Furthermore, the accuracy of each individual thermal sensation model has been compared with the outcomes of the PMV model. The results indicate that the modelling method presented in this paper is an effective tool to model personal thermal sensations and could be integrated within the PCS for optimised system operation and control.
Resumo:
With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.
Resumo:
In this paper we describe the development of a program that aims at the optimal integration of observed data in an oceanographic model describ
Resumo:
In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.
Resumo:
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.
Resumo:
The primary objective of this research study is to determine which form of testing, the PEST algorithm or an operator-controlled condition is most accurate and time efficient for administration of the gaze stabilization test
The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters
Resumo:
Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT space-based survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh et al. and a phenomenological correction was proposed. Here we tie the observed effect to a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.
Genetic algorithm inversion of the average 1D crustal structure using local and regional earthquakes
Resumo:
Knowing the best 1D model of the crustal and upper mantle structure is useful not only for routine hypocenter determination, but also for linearized joint inversions of hypocenters and 3D crustal structure, where a good choice of the initial model can be very important. Here, we tested the combination of a simple GA inversion with the widely used HYPO71 program to find the best three-layer model (upper crust, lower crust, and upper mantle) by minimizing the overall P- and S-arrival residuals, using local and regional earthquakes in two areas of the Brazilian shield. Results from the Tocantins Province (Central Brazil) and the southern border of the Sao Francisco craton (SE Brazil) indicated an average crustal thickness of 38 and 43 km, respectively, consistent with previous estimates from receiver functions and seismic refraction lines. The GA + HYPO71 inversion produced correct Vp/Vs ratios (1.73 and 1.71, respectively), as expected from Wadati diagrams. Tests with synthetic data showed that the method is robust for the crustal thickness, Pn velocity, and Vp/Vs ratio when using events with distance up to about 400 km, despite the small number of events available (7 and 22, respectively). The velocities of the upper and lower crusts, however, are less well constrained. Interestingly, in the Tocantins Province, the GA + HYPO71 inversion showed a secondary solution (local minimum) for the average crustal thickness, besides the global minimum solution, which was caused by the existence of two distinct domains in the Central Brazil with very different crustal thicknesses. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
GPR (Ground Penetrating Radar) results are shown for perpendicular broadside and parallel broadside antenna orientations. Performance in detection and localization of concrete tubes and steel tanks is compared as a function of acquisition configuration. The comparison is done using 100 MHz and 200 MHz center frequency antennas. All tubes and tanks are buried at the geophysical test site of IAG/USP in Sao Paulo city, Brazil. The results show that the long steel pipe with a 38-mm diameter was well detected with the perpendicular broadside configuration. The concrete tubes were better detected with the parallel broadside configuration, clearly showing hyperbolic diffraction events from all targets up to 2-m depth. Steel tanks were detected with the two configurations. However, the parallel broadside configuration was generated to a much lesser extent an apparent hyperbolic reflection corresponding to constructive interference of diffraction hyperbolas of adjacent targets placed at the same depth. Vertical concrete tubes and steel tanks were better contained with parallel broadside antennas, where the apexes of the diffraction hyperbolas better corresponded to the horizontal location of the buried target disposition. The two configurations provide details about buried targets emphasizing how GPR multi-component configurations have the potential to improve the subsurface image quality as well as to discriminate different buried targets. It is judged that they hold some applicability in geotechnical and geoscientific studies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present a genetic algorithm with new components to tackle capacitated lot sizing and scheduling problems with sequence dependent setups that appear in a wide range of industries, from soft drink bottling to food manufacturing. Finding a feasible solution to highly constrained problems is often a very difficult task. Various strategies have been applied to deal with infeasible solutions throughout the search. We propose a new scheme of classifying individuals based on nested domains to determine the solutions according to the level of infeasibility, which in our case represents bands of additional production hours (overtime). Within each band, individuals are just differentiated by their fitness function. As iterations are conducted, the widths of the bands are dynamically adjusted to improve the convergence of the individuals into the feasible domain. The numerical experiments on highly capacitated instances show the effectiveness of this computational tractable approach to guide the search toward the feasible domain. Our approach outperforms other state-of-the-art approaches and commercial solvers. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A numerical algorithm for fully dynamical lubrication problems based on the Elrod-Adams formulation of the Reynolds equation with mass-conserving boundary conditions is described. A simple but effective relaxation scheme is used to update the solution maintaining the complementarity conditions on the variables that represent the pressure and fluid fraction. The equations of motion are discretized in time using Newmark`s scheme, and the dynamical variables are updated within the same relaxation process just mentioned. The good behavior of the proposed algorithm is illustrated in two examples: an oscillatory squeeze flow (for which the exact solution is available) and a dynamically loaded journal bearing. This article is accompanied by the ready-to-compile source code with the implementation of the proposed algorithm. [DOI: 10.1115/1.3142903]
Resumo:
The representation of interfaces by means of the algebraic moving-least-squares (AMLS) technique is addressed. This technique, in which the interface is represented by an unconnected set of points, is interesting for evolving fluid interfaces since there is]to surface connectivity. The position of the surface points can thus be updated without concerns about the quality of any surface triangulation. We introduce a novel AMLS technique especially designed for evolving-interfaces applications that we denote RAMLS (for Robust AMLS). The main advantages with respect to previous AMLS techniques are: increased robustness, computational efficiency, and being free of user-tuned parameters. Further, we propose a new front-tracking method based on the Lagrangian advection of the unconnected point set that defines the RAMLS surface. We assume that a background Eulerian grid is defined with some grid spacing h. The advection of the point set makes the surface evolve in time. The point cloud can be regenerated at any time (in particular, we regenerate it each time step) by intersecting the gridlines with the evolved surface, which guarantees that the density of points on the surface is always well balanced. The intersection algorithm is essentially a ray-tracing algorithm, well-studied in computer graphics, in which a line (ray) is traced so as to detect all intersections with a surface. Also, the tracing of each gridline is independent and can thus be performed in parallel. Several tests are reported assessing first the accuracy of the proposed RAMLS technique, and then of the front-tracking method based on it. Comparison with previous Eulerian, Lagrangian and hybrid techniques encourage further development of the proposed method for fluid mechanics applications. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The amount of textual information digitally stored is growing every day. However, our capability of processing and analyzing that information is not growing at the same pace. To overcome this limitation, it is important to develop semiautomatic processes to extract relevant knowledge from textual information, such as the text mining process. One of the main and most expensive stages of the text mining process is the text pre-processing stage, where the unstructured text should be transformed to structured format such as an attribute-value table. The stemming process, i.e. linguistics normalization, is usually used to find the attributes of this table. However, the stemming process is strongly dependent on the language in which the original textual information is given. Furthermore, for most languages, the stemming algorithms proposed in the literature are computationally expensive. In this work, several improvements of the well know Porter stemming algorithm for the Portuguese language, which explore the characteristics of this language, are proposed. Experimental results show that the proposed algorithm executes in far less time without affecting the quality of the generated stems.