931 resultados para PROTEIN PRECIPITATION METHODS
Resumo:
Phosphatase and tensin homolog (PTEN) is a redox-sensitive, dual-specificity protein phosphatase involved in regulating a number of cellular processes including metabolism, apoptosis, cell proliferation and survival. It acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of a redox regulation of PTEN downstream signaling has been reported, the effect of cellular oxidative stress or direct PTEN oxidation on the PTEN interactome is still poorly defined. To investigate this, PTEN-GST fusion protein was prepared in its reduced form and an H2O2-oxidized form that was reversible by DTT treatment, and these were immobilized on a glutathione-sepharose-based support. The immobilized protein was incubated with cell lysate to capture interacting proteins. Captured proteins were eluted from the beads, analyzed by LC-MSMS and comparatively quantified using label-free methods. After subtraction of interactors that were also present in the resin and GST controls, 97 individual protein interactors were identified, including several that are novel. Fourteen interactors that varied significantly with the redox status of PTEN were identified, including thioredoxin and peroxiredoxin-1. Except for one interactor, their binding was higher for oxidized PTEN. Using western blotting, altered binding to PTEN was confirmed for 3 selected interactors (Prdx1, Trx, and Anxa2) and DDB1 was validated as a novel interactor with unaltered binding. Our results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome which is important for the cellular function of PTEN. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.
Resumo:
Purpose: Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Methods: Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). Results: PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P <0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P <0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P <0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. Conclusions: These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
We have studied a series of samples of bovine serum albumin (BSA) solutions with protein concentration, c, ranging from 2 to 500 mg/mL and ionic strength, I, from 0 to 2 M by small-angle X-ray scattering (SAXS). The scattering intensity distribution was compared to simulations using an oblate ellipsoid form factor with radii of 17 x 42 x 42 A, combined with either a screened Coulomb, repulsive structure factor, S-SC(q), or an attractive square-well structure factor, S-SW(q). At pH = 7, BSA is negatively charged. At low ionic strength, I <0.3 M, the total interaction exhibits a decrease of the repulsive interaction when compared to the salt-free solution, as the net surface charge is screened, and the data can be fitted by assuming an ellipsoid form factor and screened Coulomb interaction. At moderate ionic strength (0.3-0.5 M), the interaction is rather weak, and a hard-sphere structure factor has been used to simulate the data with a higher volume fraction. Upon further increase of the ionic strength (I >= 1.0 M), the overall interaction potential was dominated by an additional attractive potential, and the data could be successfully fitted by an ellipsoid form factor and a square-well potential model. The fit parameters, well depth and well width, indicate that the attractive potential caused by a high salt concentration is weak and long-ranged. Although the long-range, attractive potential dominated the protein interaction, no gelation or precipitation was observed in any of the samples. This is explained by the increase of a short-range, repulsive interaction between protein molecules by forming a hydration layer with increasing salt concentration. The competition between long-range, attractive and short-range, repulsive interactions accounted for the stability of concentrated BSA solution at high ionic strength.
Resumo:
Discovering the function of an unknown protein, particularly one with neither structural nor functional correlates, is a daunting task. Interaction analyses determine binding partners, whereas DNA transfection, either transient or stable, leads to intracellular expression, though not necessarily at physiologically relevant levels. In theory, direct intracellular protein delivery (protein transduction) provides a conceptually simpler alternative, but in practice the approach is problematic. Domains such as HIV TAT protein are valuable, but their effectiveness is protein specific. Similarly, the delivery of intact proteins via endocytic pathways (e.g. using liposomes) is problematic for functional analysis because of the potential for protein degradation in the endosomes/lysosomes. Consequently, recent reports that microspheres can deliver bio-cargoes into cells via a non-endocytic, energy-independent pathway offer an exciting and promising alternative for in vitro delivery of functional protein. In order for such promise to be fully exploited, microspheres are required that (i) are stably linked to proteins, (ii) can deliver those proteins with good efficiency, (iii) release functional protein once inside the cells, and (iv) permit concomitant tracking. Herein, we report the application of microspheres to successfully address all of these criteria simultaneously, for the first time. After cellular uptake, protein release was autocatalyzed by the reducing cytoplasmic environment. Outside of cells, the covalent microsphere-protein linkage was stable for ≥90 h at 37°C. Using conservative methods of estimation, 74.3% ± 5.6% of cells were shown to take up these microspheres after 24 h of incubation, with the whole process of delivery and intracellular protein release occurring within 36 h. Intended for in vitro functional protein research, this approach will enable study of the consequences of protein delivery at physiologically relevant levels, without recourse to nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake. © 2014 by The American Society for Biochemistry and Molecular Biology Inc.
Resumo:
Whey proteins may be fractionated by isoelectric precipitation followed by centrifugal recovery of the precipitate phase. Transport and processing of protein precipitates may alter the precipitate particle properties, which may affect how they behave in subsequent processes. For example, the transport of precipitate solution through pumps, pipes and valves and into a centrifugal separator may cause changes in particle size and density, which may affect the performance of the separator. This work investigates the effect of fluid flow intensity, flow geometry and exposure time on the breakage of whey protein precipitates: Computational fluid dynamics (CFD) was used to quantify the flow intensity in different geometries. Flow geometry can have a critical impact on particle breakage. Sharp geometrical transitions induce large increases in turbulence that can result in substantial particle breakage. As protein precipitate particles break, they tend to form denser more compact structures. The reduction in particle size and increase in compaction is due to breakage. This makes the particles become more resistant to further breakage as particle compactness increases. The effect of flow intensity on particle breakage is coupled to exposure time, with greater exposure time producing more breakage. However, it is expected that the particles will attain an equilibrium particle size and density after prolonged exposure in a constant flow field where no further breakage will occur with exposure time. © 2005 Institution of Chemical Engineers.
Resumo:
Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15 min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5 min of UV irradiation irrespective of method used. After irradiation for 15 min, less oxidation was detected by half of the laboratories than after 5 min irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated and control liver proteins, only seven were common in all three liver preparations. Lysine and arginine residues modified by carbonyls are likely to be resistant to tryptic proteolysis. Use of a cocktail of proteases may increase the recovery of oxidised peptides. In conclusion, standardisation is critical for carbonyl analysis and heavily oxidised proteins may not be effectively analysed by any existing technique.
Resumo:
Biological processes are subject to the influence of numerous factors and their interactions, which may be non-linear in nature. In a recombinant protein production experiment, understanding the relative importance of these factors, and their influence on the yield and quality of the recombinant protein being produced, is an essential part of its optimisation. In many cases, implementing a design of experiments (DoE) approach has delivered this understanding. This chapter aims to provide the reader with useful pointers in applying a DoE strategy to improve the yields of recombinant yeast cultures.
Resumo:
Having access to suitably stable, functional recombinant protein samples underpins diverse academic and industrial research efforts to understand the workings of the cell in health and disease. Synthesising a protein in recombinant host cells typically allows the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to the native human source cells of many proteins of interest, while also being quick, easy, and cheap to grow and process. Even in these cells the production of some proteins can be plagued by low functional yields. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast cell factories. In this chapter, we provide an overview of the opportunities available to improve yeast as a host system for recombinant protein production.
Resumo:
Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.
Resumo:
G protein-coupled receptors (GPCR) are amongst the best studied and most functionally diverse types of cell-surface protein. The importance of GPCRs as mediates or cell function and organismal developmental underlies their involvement in key physiological roles and their prominence as targets for pharmacological therapeutics. In this review, we highlight the requirement for integrated protocols which underline the different perspectives offered by different sequence analysis methods. BLAST and FastA offer broad brush strokes. Motif-based search methods add the fine detail. Structural modelling offers another perspective which allows us to elucidate the physicochemical properties that underlie ligand binding. Together, these different views provide a more informative and a more detailed picture of GPCR structure and function. Many GPCRs remain orphan receptors with no identified ligand, yet as computer-driven functional genomics starts to elaborate their functions, a new understanding of their roles in cell and developmental biology will follow.
Resumo:
Classification of MHC molecules into supertypes in terms of peptide-binding specificities is an important issue, with direct implications for the development of epitope-based vaccines with wide population coverage. In view of extremely high MHC polymorphism (948 class I and 633 class II HLA alleles) the experimental solution of this task is presently impossible. In this study, we describe a bioinformatics strategy for classifying MHC molecules into supertypes using information drawn solely from three-dimensional protein structure. Two chemometric techniques–hierarchical clustering and principal component analysis–were used independently on a set of 783 HLA class I molecules to identify supertypes based on structural similarities and molecular interaction fields calculated for the peptide binding site. Eight supertypes were defined: A2, A3, A24, B7, B27, B44, C1, and C4. The two techniques gave 77% consensus, i.e., 605 HLA class I alleles were classified in the same supertype by both methods. The proposed strategy allowed “supertype fingerprints” to be identified. Thus, the A2 supertype fingerprint is Tyr9/Phe9, Arg97, and His114 or Tyr116; the A3-Tyr9/Phe9/Ser9, Ile97/Met97 and Glu114 or Asp116; the A24-Ser9 and Met97; the B7-Asn63 and Leu81; the B27-Glu63 and Leu81; for B44-Ala81; the C1-Ser77; and the C4-Asn77. action fields calculated for the peptide binding site. Eight supertypes were defined: A2, A3, A24, B7, B27, B44, C1, and C4. The two techniques gave 77% consensus, i.e., 605 HLA class I alleles were classified in the same supertype by both methods. The proposed strategy allowed “supertype fingerprints” to be identified. Thus, the A2 supertype fingerprint is Tyr9/Phe9, Arg97, and His114 or Tyr116; the A3-Tyr9/Phe9/Ser9, Ile97/Met97 and Glu114 or Asp116; the A24-Ser9 and Met97; the B7-Asn63 and Leu81; the B27-Glu63 and Leu81; for B44-Ala81; the C1-Ser77; and the C4-Asn77.
Resumo:
The Protein pKa Database (PPD) v1.0 provides a compendium of protein residue-specific ionization equilibria (pKa values), as collated from the primary literature, in the form of a web-accessible postgreSQL relational database. Ionizable residues play key roles in the molecular mechanisms that underlie many biological phenomena, including protein folding and enzyme catalysis. The PPD serves as a general protein pKa archive and as a source of data that allows for the development and improvement of pKa prediction systems. The database is accessed through an HTML interface, which offers two fast, efficient search methods: an amino acid-based query and a Basic Local Alignment Search Tool search. Entries also give details of experimental techniques and links to other key databases, such as National Center for Biotechnology Information and the Protein Data Bank, providing the user with considerable background information.
Resumo:
Objective In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. Methods The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). Key findings While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. Conclusion This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design.
Mass spectrometry-based methods for identifying oxidized proteins in disease:advances and challenges
Resumo:
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Resumo:
Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.