964 resultados para PARANA CONTINENTAL FLOOD BASALTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison of 50 basalts recovered at Sites 706, 707, 713, and 715 along the Reunion hotspot trace during Ocean Drilling Program Leg 115 in the Indian Ocean shows that seafloor alteration had little effect on noble metal concentrations (Au, Pd, Pt, Rh, Ru, and Ir), determined by inductively coupled plasma-mass spectrometry (ICP-MS), which generally tend to decrease with magma evolution. Their compatible-element behavior may be related to the precipitation of Ir-Os-based alloys, chromite, sulfides, and/or olivine and clinopyroxene in some combination. The simplest explanation indicates silicate control of concentrations during differentiation. Basalts from the different sites show varying degrees of alkalinity. Noble metal abundances tend to increase with decreasing basalt alkalinity (i.e., with increasing percentages of mantle melting), indicating that the metals behave as compatible elements during mantle melting. The retention of low-melting-point Au, Pd, and Rh in mantle sulfides, which mostly dissolve before significant proportions of Ir-Os-based alloys melt, explains increasing Pd/Ir ratios with decreasing alkalinity (increasing melting percentages) in oceanic basalts. High noble metal concentrations in Indian Ocean basalts (weighted averages of Au, Pd, Rh, Pt, Ru, and Ir in Leg 115 basalts are 3.2, 8.1, 0.31, 7.3, 0.22, and 0.11 ppb, respectively), compared with basalts from some other ocean basins, may reflect fundamental primary variations in upper- mantle noble metal abundances

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions are reported for basaltic rocks collected during ODP Leg 127 from the Yamato Basin, a rifted backarc basin in the Japan Sea. The basalts are classified into two groups in terms of Nd isotopic composition: the upper sills at Site 797 are characterized by higher 143Nd/144Nd ratios (0.513083-0.513158, epsilon-Nd = 8.68-10.14) and the basalts from Site 794 and the lower sills at Site 797 have lower 143Nd/144Nd ratios (0.512684-0.512862, epsilon-Nd = 0.90-4.37). All of the basalts show higher Sr isotopic compositions than those of the mantle array, which is attributed to seawater alteration. The basalts with lower Nd isotopic values ranging in age from 20.6 to 17.3 Ma have tapped an enriched subcontinental upper mantle (SCUM) with the minor involvement of a depleted asthenospheric mantle (AM). Subsequent change in composition through the physical replacement of SCUM by AM yielded the basalts of the upper sills of higher Nd isotopic compositions. This event within the upper mantle was associated with the breakup of the overlying lithosphere during the rifting of the Japan Sea backarc basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleomagnetic measurements were performed on 106 basalt samples collected from Holes 747C, 748C, 749C, and 750B. Basalt samples were recovered from the southern portion of the Kerguelen Plateau and the transitional zone between the northern and southern plateau in the south central Indian Ocean. The ages of basalts range from 100 to 115 Ma. In addition to the preliminary shipboard measurements (Schlich, Wise, et al., 1989, doi:10.2973/odp.proc.ir.120.1989), characteristic inclinations of the magnetization were obtained using mainly stepwise thermal demagnetization of the samples. Reliable paleomagnetic results were obtained from three sites (Sites 747, 748, and 749). The paleomagnetic inclinations of Sites 747, 748, and 749 are -51°, -63°, and -62°, respectively. The considerable differences between the paleomagnetic and present inclinations of about 70° at Sites 747, 748, and 749 indicate that displacement in the direction of the geomagnetic meridian has taken place since formation of the basalt. Shallower paleomagnetic inclinations than the present inclinations at each site imply a southward movement of the sites with respect to the geomagnetic pole. By comparing the apparent polar wander path of Antarctica with the virtual geomagnetic pole (VGP) of the Southern Kerguelen Plateau, we have concluded that no major tectonic movement has taken place between the Kerguelen Plateau and Antarctica since formation of the basalt (i.e., 100-115 Ma). The angular dispersion of the VGP for the Kerguelen Plateau is calculated as 17°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basalts recovered along the Reunion hotspot track on Ocean Drilling Program (ODP) Leg 115 range in age from 34 Ma at Site 706 to 64 Ma at Site 707. They have undergone various degrees of secondary alteration. Within single holes the amount of alteration can vary from a few percent to near complete replacement of phenocrysts and groundmass by secondary minerals. Olivine appears to be the most susceptible to alteration and in some sections it is the only mineral altered. In other sections, olivine, pyroxene and plagioclase phenocrysts, and groundmass have been completely replaced by secondary minerals. Clays are the predominant form of secondary mineralization. In addition to replacing olivine, pyroxene, glass, and groundmass, clays have filled veins, vesicles, and voids. Minor amounts of calcite, zeolites, and K-feldspar were also detected. The clays that filled vesicles and veins often show color zonations of dark, opaque bands near the edges that grade into tan or green transparent regions in the centers of the veins. The electron microprobe was used to obtain chemical analyses of these veins as well as to characterize isolated clays that replaced specific minerals and filled voids and vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge (Rabinowitz and LaBrecque, 1979 doi:10.1029/JB084iB11p05973, Moore et al. (1983 doi:10.1130/0016-7606(1983)94<907:TWRTDS>2.0.CO;2). The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and coraistent with formation at the paleo mid-ocean ridge (Moore et al., 1983). The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other. The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 207Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high 87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher 143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressional (Vp) and shear (Vs) wave velocities have been measured to 1.0 kbar for 14 cores of well-consolidated sedimentary rock from Atlantic and Pacific sites of the Deep Sea Drilling Project. The range of VP (2.05-5.38 km/sec at 0.5 kbar) shows significant overlap with the range of oceanic layer-2 seismic velocities determined by marine refraction surveys, suggesting that sedimentary rocks may, in some regions, constitute the upper portion of layer 2. Differing linear relationships between VP and Vs for basalts and sedimentary rocks, however, may provide a method of resolving layer-2 composition. This is illustra ted for a refraction survey site on the flank of the Mid-Atlantic Ridge where layer-2 velocities agree with basalt, and two sites on the Saya de Malha Bank in the Indian Ocean where layer-2 velocities appear to represent sedimentary rock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.