971 resultados para PARAMETER ESTIMATION
Resumo:
Abstract
Resumo:
Multi-center studies using magnetic resonance imaging facilitate studying small effect sizes, global population variance and rare diseases. The reliability and sensitivity of these multi-center studies crucially depend on the comparability of the data generated at different sites and time points. The level of inter-site comparability is still controversial for conventional anatomical T1-weighted MRI data. Quantitative multi-parameter mapping (MPM) was designed to provide MR parameter measures that are comparable across sites and time points, i.e., 1 mm high-resolution maps of the longitudinal relaxation rate (R1 = 1/T1), effective proton density (PD(*)), magnetization transfer saturation (MT) and effective transverse relaxation rate (R2(*) = 1/T2(*)). MPM was validated at 3T for use in multi-center studies by scanning five volunteers at three different sites. We determined the inter-site bias, inter-site and intra-site coefficient of variation (CoV) for typical morphometric measures [i.e., gray matter (GM) probability maps used in voxel-based morphometry] and the four quantitative parameters. The inter-site bias and CoV were smaller than 3.1 and 8%, respectively, except for the inter-site CoV of R2(*) (<20%). The GM probability maps based on the MT parameter maps had a 14% higher inter-site reproducibility than maps based on conventional T1-weighted images. The low inter-site bias and variance in the parameters and derived GM probability maps confirm the high comparability of the quantitative maps across sites and time points. The reliability, short acquisition time, high resolution and the detailed insights into the brain microstructure provided by MPM makes it an efficient tool for multi-center imaging studies.
Resumo:
PURPOSE: To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. METHODS: Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. RESULTS: Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. CONCLUSIONS: Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.
Resumo:
In the current issue of epidemiology, Danaei and colleagues elegantly estimated both the direct effect and the indirect effect-that is, the effect mediated by blood pressure, cholesterol, glucose, fibrinogen, and high-sensitivity C-reactive protein-of body mass index (BMI) on the risk of coronary heart disease (CHD). they analyzed data from 9 cohort studies including 58,322 patients and 9459 CHD events, with baseline measurements between 1954 and 2001. Using sophisticated and cutting-edge methods for direct and indirect effect estimations, the authors estimated that half of the risk of overweight and obesity would be mediated by blood pressure, cholesterol, and glucose. Few additional percentage points of the risk would be mediated by fibrinogen and hs-CRP. How should we understand these estimates? Can we say that if obese persons reduce their body weight and reach a normal body weight, their excess risk of CHD would be reduced by half through an improvement in these mediators and by half through the reduction in BmI itself? Is that also true if these individuals are prevented from becoming obese in the first place? Can we also conclude that if these mediators are well controlled in obese individuals through other means than a body weight reduction, their excess risk of CHD would be reduced by half? Let us confront these estimates with observations from studies evaluating 2 interventions to reduce body weight, that is, bariatric surgery in patients with severe obesity and intensive lifestyle intervention in overweight patients with diabetes
Resumo:
The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1') ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.
Resumo:
Abstract
Resumo:
Selostus: Ravikilpailumenestysmittojen periytymisasteet ja toistumiskertoimet kilpailukohtaisten tulosten perusteella
Resumo:
This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.
Resumo:
This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. First, the asymptotic covariances of the training-only, semi-blind conditional maximum likelihood (CML) and semi-blind Gaussian maximum likelihood (GML) channelestimators are derived. Then, these formulas are further simplified assuming randomized spreading and training sequences under the approximation of high spreading factors and high number of codes. The results provide a useful tool to describe the performance of the channel estimators as a function of basicsystem parameters such as number of codes, spreading factors, or traffic to training power ratio.
Resumo:
The objective of this paper is to introduce a fourth-order cost function of the displaced frame difference (DFD) capable of estimatingmotion even for small regions or blocks. Using higher than second-orderstatistics is appropriate in case the image sequence is severely corruptedby additive Gaussian noise. Some results are presented and compared to those obtained from the mean kurtosis and the mean square error of the DFD.
Resumo:
This correspondence addresses the problem of nondata-aidedwaveform estimation for digital communications. Based on the unconditionalmaximum likelihood criterion, the main contribution of this correspondenceis the derivation of a closed-form solution to the waveform estimationproblem in the low signal-to-noise ratio regime. The proposed estimationmethod is based on the second-order statistics of the received signaland a clear link is established between maximum likelihood estimation andcorrelation matching techniques. Compression with the signal-subspace isalso proposed to improve the robustness against the noise and to mitigatethe impact of abnormals or outliers.
Resumo:
In this letter, we obtain the Maximum LikelihoodEstimator of position in the framework of Global NavigationSatellite Systems. This theoretical result is the basis of a completelydifferent approach to the positioning problem, in contrastto the conventional two-steps position estimation, consistingof estimating the synchronization parameters of the in-viewsatellites and then performing a position estimation with thatinformation. To the authors’ knowledge, this is a novel approachwhich copes with signal fading and it mitigates multipath andjamming interferences. Besides, the concept of Position–basedSynchronization is introduced, which states that synchronizationparameters can be recovered from a user position estimation. Weprovide computer simulation results showing the robustness ofthe proposed approach in fading multipath channels. The RootMean Square Error performance of the proposed algorithm iscompared to those achieved with state-of-the-art synchronizationtechniques. A Sequential Monte–Carlo based method is used todeal with the multivariate optimization problem resulting fromthe ML solution in an iterative way.
Resumo:
Abstract:The objective of this work was to develop and validate a prognosis system for volume yield and basal area of intensively managed loblolly pine (Pinus taeda) stands, using stand and diameter class models compatible in basal area estimates. The data used in the study were obtained from plantations located in northern Uruguay. For model validation without data loss, a three-phase validation scheme was applied: first, the equations were fitted without the validation database; then, model validation was carried out; and, finally, the database was regrouped to recalibrate the parameter values. After the validation and final parameterization of the models, a simulation of the first commercial thinning was carried out. The developed prognosis system was precise and accurate in estimating basal area production per hectare or per diameter classes. There was compatibility in basal area estimates between diameter class and whole stand models, with a mean difference of -0.01 m2ha-1. The validation scheme applied is logic and consistent, since information on the accuracy and precision of the models is obtained without the loss of any information in the estimation of the models' parameters.
Resumo:
Les modèles hydrologiques développés pour les pluies extrêmes de type PMP sont difficiles à paramétrer en raison du manque de données disponibles pour ces évènements et de la complexité du terrain. Cet article présente les processus et les résultats de l'ajustement des paramètres pour un modèle hydrologique distribué. Ce modèle à une échelle fine a été développé pour l'estimation des crues maximales probables dans le cas d'une PMP. Le calcul effectué pour deux bassins versants test suisses et pour deux épisodes d'orages d'été concerne l'estimation des paramètres du modèle, divisé en deux groupes. La première concerne le calcul des vitesses des écoulements et l'autre la détermination de la capacité d'infiltration initiale et finale pour chaque type de sol. Les résultats validés avec l'équation de Nash montrent une bonne corrélation entre les débits simulés et ceux observés.
Resumo:
Estimer la filtration glomérulaire chez les personnes âgées, tout en tenant compte de la difficulté supplémentaire d'évaluer leur masse musculaire, est difficile et particulièrement important pour la prescription de médicaments. Le taux plasmatique de la creatinine dépend à la fois de la fraction d'élimination rénale et extra-rénale et de la masse musculaire. Actuellement, pour estimer là filtration glomérulaire différentes formules sont utilisées, qui se fondent principalement sur la valeur de la créatinine. Néanmoins, en raison de la fraction éliminée par les voies tubulaires et intestinales la clairance de la créatinine surestime généralement le taux de filtration glomérulaire (GFR). Le but de cette étude est de vérifier la fiabilité de certains marqueurs et algorithmes de la fonction rénale actuellement utilisés et d'évaluer l'avantage additionnel de prendre en considération la masse musculaire mesurée par la bio-impédance dans une population âgée (> 70 ans) et avec une fonction rénale chronique compromise basée sur MDRD eGFR (CKD stades lll-IV). Dans cette étude, nous comparons 5 équations développées pour estimer la fonction rénale et basées respectivement sur la créatinine sérique (Cockcroft et MDRD), la cystatine C (Larsson), la créatinine combinée à la bêta-trace protéine (White), et la créatinine ajustée à la masse musculaire obtenue par analyse de la bio-impédance (MacDonald). La bio-impédance est une méthode couramment utilisée pour estimer la composition corporelle basée sur l'étude des propriétés électriques passives et de la géométrie des tissus biologiques. Cela permet d'estimer les volumes relatifs des différents tissus ou des fluides dans le corps, comme par exemple l'eau corporelle totale, la masse musculaire (=masse maigre) et la masse grasse corporelle. Nous avons évalué, dans une population âgée d'un service interne, et en utilisant la clairance de l'inuline (single shot) comme le « gold standard », les algorithmes de Cockcroft (GFR CKC), MDRD, Larsson (cystatine C, GFR CYS), White (beta trace protein, GFR BTP) et Macdonald (GFR = ALM, la masse musculaire par bio-impédance. Les résultats ont montré que le GFR (mean ± SD) mesurée avec l'inuline et calculée avec les algorithmes étaient respectivement de : 34.9±20 ml/min pour l'inuline, 46.7±18.5 ml/min pour CKC, 47.2±23 ml/min pour CYS, 54.4±18.2ml/min pour BTP, 49±15.9 ml/min pour MDRD et 32.9±27.2ml/min pour ALM. Les courbes ROC comparant la sensibilité et la spécificité, l'aire sous la courbe (AUC) et l'intervalle de confiance 95% étaient respectivement de : CKC 0 68 (055-0 81) MDRD 0.76 (0.64-0.87), Cystatin C 0.82 (0.72-0.92), BTP 0.75 (0.63-0.87), ALM 0.65 (0.52-0.78). ' En conclusion, les algorithmes comparés dans cette étude surestiment la GFR dans la population agee et hospitalisée, avec des polymorbidités et une classe CKD lll-IV. L'utilisation de l'impédance bioelectrique pour réduire l'erreur de l'estimation du GFR basé sur la créatinine n'a fourni aucune contribution significative, au contraire, elle a montré de moins bons résultats en comparaison aux autres equations. En fait dans cette étude 75% des patients ont changé leur classification CKD avec MacDonald (créatinine et masse musculaire), contre 49% avec CYS (cystatine C), 56% avec MDRD,52% avec Cockcroft et 65% avec BTP. Les meilleurs résultats ont été obtenus avec Larsson (CYS C) et la formule de Cockcroft.