999 resultados para Ozone-induced
Resumo:
The present paper studies numerical modelling of near-wall two-phase flows induced by a normal shock wave moving at a constant speed, over a micronsized particles bed. In this two-fluid model, the possibility of particle trajectory intersection is considered and a full Lagrangian formulation of the dispersed phase is introduced. The finiteness of the Reynolds and Mach numbers of the flow around a particle as well as the fineness of the particle sizes are taken into account in describing the interactions between the carrier- and dispersed- phases. For the small mass-loading ratio case, the numerical simulation of flow structure of the two phases is implemented and the profiles of the particle number density are obtained under the constant-flux condition on the wall. The effects of the shock Mach number and the particle size and material density on particle entrainment motion are discussed in detail.The obtained results indicate that interphase non-equilibrium in the velocity and temperature is a common feature for this type of flows and a local particle accumulation zone may form near the envelope of the particle trajectory family.
Resumo:
The localized dislocation at the interface induces uneven strain distribution in two wafer-bonded layers. Because of the different elastic properties of two bonding layers and this uneven strain distribution, the bilayered microstructure deflects and deflection relaxes the strains. Depending on the microstructure dimensions, elastic properties and lattice parameters, the contribution of deflection to strain field can be very significant. The interface condition also plays an important role in relaxing strain. Two models capable of describing different interface conditions are used for the analysis and offer a more comprehensive study on the dislocation-induced strain field in a wafer-bonded bilayered microstructure. The combined effect of microstructure dimensions and interface condition on the strain is presented and compared.
Resumo:
Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly governed by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.
Resumo:
Most of the existing researches either focus on vortex-induced vibrations (VIVs) of a pipeline near a rigid boundary, or on seabed scour around a fixed pipeline. In this study, the coupling effects between pipeline vibration and sand scour are investigated experimentally. Experimental results indicate that there often exist two phases in the process of sand scouring around the pipeline with an initial embedment, i.e. Phase I: scour beneath pipe without VIV, and Phase II: scour with VIV of pipe. During Phase II, the amplitude of pipe vibration gets larger and its frequency gets smaller while the sand beneath the pipe is being scoured, and finally the pipe vibration and sand scour get into an equilibrium state. This indicates that sand scouring has an influence upon not only the amplitude of pipe vibration but also its frequency. Moreover, the equilibrium scour depth decreases with increasing initial gap-to-diameter ratio for both the fixed pipes and vibrating pipes. For a given value of initial gapto- diameter ratio (e0/D), the vibrating pipe may induce a deeper scour hole than the fixed pipe in the examined range of initial gap-to-diameter ratios (−0.25 < e0/D < 0.75).
Resumo:
In this paper a thermodynamic constitutive model is developed for stress induced phase transformation in single crystalline and polycrystalline shape memory alloys (SMAs). Volume fractions of different martensite variants are chosen as internal variables to describe the evolution of microstructure state in the material. This model is then used in prediction the transformation behavior of a SMA (Cu-Al-Zn-Mn) under complex thermomechanical load (including complete and incomplete transformation in mechanical cycling, and proportional/non-proportional loading). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model A test model which can be tested in the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined. The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.
Resumo:
The existing Det Norske Veritas DNV Recommended Practice RP E305 for pipeline on-bottom stability is mainly based on the pipe–soil interaction model reported by Wagner et al. in 1987, and the wake model reported by Lambrakos et al. in 1987, to calculate the soil resistance and the hydrodynamic forces upon pipeline, respectively. Unlike the methods in the DNV Practice, in this paper, an improved analysis method is proposed for the on-bottom stability of a submarine pipeline, which is based on the relationships between Um/ gD 0.5 and Ws / D2 for various restraint conditions obtained by the hydrodynamic loading experiments, taking into account the coupling effects between wave, pipeline, and sandy seabed. The analysis procedure is illustrated with a detailed flow chart. A comparison is made between the submerged weights of pipeline predicted with the DNV Practice and those with the new method. The proposed analysis method may provide a helpful tool for the engineering practice of pipeline on-bottom stability design.
Resumo:
利用自行研制的含热传导、冲击动力学大、变形有限元程序,模拟了小尺寸梁在脉冲激光加热条件下的变形过程。在此基础上,利用商用程序模拟了冷却及残余应力的产生,研究了激光参数(强度及分布)等对于微弯曲的影响。数值模拟结果与文献中的实验观察相吻合。
Resumo:
A direct comparison between time resolved PLIF measurements of OH and two dimensional slices from a full three dimensional DNS data set of turbulent premixed flame kernels in lean methane/air mixture was presented. The local flame structure and the degree of flame wrinkling were examined in response to differing turbulence intensities and turbulent Reynolds numbers. Simulations were performed using the SEGA DNS code, which is based on the solution of the compressible Navier Stokes, species, and energy equations for a lean hydrocarbon mixture. For the OH PLIF measurements, a cluster of four Nd:YAG laser was fired sequentially at high repetition rates and used to pump a dye laser. The frequency doubled laser beam was formed into a sheet of 40 mm height using a cylindrical telescope. The combination of PLIF and DNS has been demonstrated as a powerful tool for flame analysis. This research will form the basis for the development of sub-grid-scale (SGS) models for LES of lean-premixed combustion systems such as gas turbines. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).
Resumo:
The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level.A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed,especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope.Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated.The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.
Resumo:
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers.
Resumo:
A new kind of failure mode is observed in circular brass foils in which their peripheries are fixed and their surfaces are subjected to a long pulsed laser over a central region. The failure is classified into three stages; they are referred to as thermal bulging, localized shear deformation and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. To study the failure mode, we investigate the non-linear response of heated, non-homogeneous circular plates. Based on the large deflection equations of Berger [J. Appl. Mech. 22 (3), 465-472 (1965)], Ohnabe and Mizuguchi [Int. J. Non-Linear Mech. 28 (4), 365-372 (1993)] and the parabolic shear deformation theory of Bhimaraddi and Stevens [J. Appl. Mech. 51 (1), 195-198 (1984)], we have derived new coupled governing equations of shear deformation and deflection. The new equations are solved, for the plate with a clamped edge, by the Galerkin and iterative methods. The numerical results for the shear deformation distribution are in good agreement with the experimental observation.