881 resultados para Osmotic and ionic regulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to investigate the extent of retail change in the UK grocery sector over the last 30 years. Design/methodology/approach – In 1980, a press article by Richard Milner and Patience Wheatcroft attempted to anticipate retail change by 1984. Taking that as a template, the paper examines how retail did, in fact, change over a much longer timescale: with some unanticipated innovations in place even by 1984. Reference is made to academic research on grocery retailing in progress at the time and which has recently been revisited. Findings – Although Milner and Wheatcroft tackled the modest task of looking ahead just four years, the content of their article is intriguingly reflective of the retail structure and systems of the UK at the time. Whilst some innovations were not anticipated, the broad themes of superstore power and market regulation still command attention 30 years on. Originality/value – Through reconsidering 30 years of retail change, the paper highlights that with time how do you shop has come to pose at least as interesting a question as where do you shop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orally disintegrating tablets (ODTs) which are also referred to as orodispersible and fast disintegrating tablets, are solid oral dosage forms which upon placing on the tongue, disperse/disintegrate rapidly before being swallowed as a suspension or solution. ODTs are therefore easier and more convenient to administer than conventional tablets and are particularly beneficial for paediatric and geriatric patients, who generally have difficulty swallowing their medication. The work presented in this thesis involved the formulation and process development of ODTs, prepared using freeze-drying. Gelatin is one of the principal excipients used in the formulation of freeze-dried ODTs. One of the studies presented in this thesis investigated the potential modification of the properties of this excipient, in order to improve the performance of the tablets. As gelatin is derived from animal sources, a number of ethical issues surround its use as an excipient in pharmaceutical preparations. This was one of the motivations, Methocel™ and Kollicoat® IR were evaluated as binders as alternative materials to gelatin. Polyox™ was also evaluated as a binder together with its potential uses as a viscosity increasing and mucoadhesive agent to increase the retention of tablets in the mouth to encourage pre-gastric absorption of active pharmaceutical ingredients (APIs). The in vitro oral retention of freeze-dried ODT formulations was one property which was assessed in a design of experiments – factorial design study, which was carried out to further understand the role that formulation excipients have on the properties of the tablets. Finally, the novel approach of incorporating polymeric nanoparticles in freeze-dried ODTs was investigated, to study if the release profile of APIs could be modified, which could improve their therapeutic effect. The results from these studies demonstrated that the properties of gelatin-based formulations can be modified by adjusting pH and ionic strength. Adjustment of formulation pH has shown to significantly reduce tablet disintegration time. Evaluating Methocel™, in particular low viscosity grades, and Kollicoat® IR as binders has shown that these polymers can form tablets of satisfactory hardness and disintegration time. Investigating Polyox™ as an excipient in freeze-dried ODT formulations revealed that low viscosity grades appear suitable as binders whilst higher viscosity grades could potentially be utilised as viscosity increasing and mucoadhesive agents. The design of experiments – factorial design study revealed the influence of individual excipients in a formulation mix on resultant tablet properties and in vitro oral retention of APIs. Novel methods have been developed, which allows the incorporation of polymeric nanoparticles in situ in freeze-dried ODT formulations, which allows the modification of the release profile of APIs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emotional liability and mood dysregulation characterize bipolar disorder (BD), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BD, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (DCM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging studies in bipolar disorder report gray matter volume (GMV) abnormalities in neural regions implicated in emotion regulation. This includes a reduction in ventral/orbital medial prefrontal cortex (OMPFC) GMV and, inconsistently, increases in amygdala GMV. We aimed to examine OMPFC and amygdala GMV in bipolar disorder type 1 patients (BPI) versus healthy control participants (HC), and the potential confounding effects of gender, clinical and illness history variables and psychotropic medication upon any group differences that were demonstrated in OMPFC and amygdala GMV. Images were acquired from 27 BPI (17 euthymic, 10 depressed) and 28 age- and gender-matched HC in a 3T Siemens scanner. Data were analyzed with SPM5 using voxel-based morphometry (VBM) to assess main effects of diagnostic group and gender upon whole brain (WB) GMV. Post-hoc analyses were subsequently performed using SPSS to examine the extent to which clinical and illness history variables and psychotropic medication contributed to GMV abnormalities in BPI in a priori and non-a priori regions has demonstrated by the above VBM analyses. BPI showed reduced GMV in bilateral posteromedial rectal gyrus (PMRG), but no abnormalities in amygdala GMV. BPI also showed reduced GMV in two non-a priori regions: left parahippocampal gyrus and left putamen. For left PMRG GMV, there was a significant group by gender by trait anxiety interaction. GMV was significantly reduced in male low-trait anxiety BPI versus male low-trait anxiety HC, and in high- versus low-trait anxiety male BPI. Our results show that in BPI there were significant effects of gender and trait-anxiety, with male BPI and those high in trait-anxiety showing reduced left PMRG GMV. PMRG is part of medial prefrontal network implicated in visceromotor and emotion regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation. The properties and characteristics of the formulations and tablets which were investigated included: glass transition temperature, wettability, porosity, mechanical properties, disintegration time, morphology of the internal structure of the freeze-dried tablets, and drug dissolution. The results from the pH study revealed that adjusting the pH of the formulation away from the isoelectric point of gelatin, resulted in an improvement in tablet disintegration time possibly due to increase in gelatin swelling resulting in greater tablet porosity. The results from the ionic strength study revealed that the inclusion of sodium chloride influenced tablet porosity, tablet morphology and the glass transition temperature of the formulations. Data from the milling study showed that milling the excipients influenced formulation characteristics, namely wettability and powder porosity. The study concludes that alterations of simple parameters such as pH and salt concentration have a significant influence on formulation of ODT. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The periconceptional period, embracing the terminal stages of oocyte growth and post-fertilisation development up to implantation, is sensitive to parental nutrition. Deficiencies or excesses in a range of macro- and micronutrients during this period can lead to impairments in fertility, fetal development and long-term offspring health. Obesity and genotype-related differences in regional adiposity are associated with impaired liver function and insulin resistance, and contribute to fatty acid-mediated impairments in sperm viability and oocyte and embryo quality, all of which are associated with endoplasmic reticulum stress and compromised fertility. Disturbances to maternal protein metabolism can elevate ammonium concentrations in reproductive tissues and disturb embryo and fetal development. Associated with this are disturbances to one-carbon metabolism, which can lead to epigenetic modifications to DNA and associated proteins in offspring that are both insulin resistant and hypertensive. Many enzymes involved in epigenetic gene regulation use metabolic cosubstrates (e.g. acetyl CoA and S-adenosyl methionine) to modify DNA and associated proteins, and so act as 'metabolic sensors' providing a link between parental nutritional status and gene regulation. Separate to their genomic contribution, spermatozoa can also influence embryo development via direct interactions with the egg and by seminal plasma components that act on oviductal and uterine tissues. © IETS 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11) (OCH(2)CH(2))(6)OMe (EG(6)OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C, pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These case studies from CIMA highlight the need to embed risk management within more easily understood behaviours, consistent with the overall organisational culture. In each case, some form of internal audit team provides either an oversight function or acts as an expert link in that feedback loop. Frontline staff, managers and specialists should be completely aligned on risk, in part just to ensure that there is a consistency of approach. They should understand instinctively that good performance includes good risk management. Tesco has continued to thrive during the recession and remains a robust and efficient group of businesses despite the emergence of potential threats around consumer spending and the supply chain. RBS, by contrast, has suffered catastrophic and very public failures of risk management despite a large in-house function and stiff regulation of risk controls. Birmingham City Council, like all local authorities, is adapting to more commercial modes of operation and is facing diverse threats and opportunities emerging as a result of social change. And DCMS, like many other public sector organisations, has to handle an incredibly complex network of delivery partners within the context of a relatively recent overhaul of central government risk management processes. Key Findings: •Risk management is no longer solely a financial discipline, nor is it simply a concern for the internal control function. •Where organisations retain a discrete risk management cadre – often specialists at monitoring and evaluating a range of risks – their success is dependent on embedding risk awareness in the wider culture of the enterprise. •Risk management is most successful when it is explicitly linked to operational performance. •Clear leadership, specific goals, excellent influencing skills and open-mindedness to potential threats and opportunities are essential for effective risk management. •Bureaucratic processes and systems can hamper good risk management – either as a result of a ‘box-ticking mentality’ or because managers and staff believe they do not need to consider risk themselves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cikk kiindulópontja az a tény, hogy a számvitel, azon belül is a pénzügyi beszámolás alapvető feladata döntésekhez hasznosítható információk nyújtása a vállalkozásokkal kapcsolatba kerülő érintettek számára. A gazdasági jelenségek leképezése, számviteli transzformációja során létrejövő adatok információként való hasznosításának feltétele, hogy a pénzügyi kimutatások felhasználói tisztában legyenek a leképezés mögöttes feltételezéseivel. A cikk első része a mérés általános definíciójából kiindulva mutatja be a számviteli mérés és értékelés fogalmát, ezek összefüggését, alapvető jellemzőit. Ezt követően a pénzügyi beszámolásban jelenleg érvényesülő értékelési keretrendszert vázolja fel a nemzetközi (IFRS), illetve a magyar szabályozásból kiindulva. A cikk harmadik része a szabályozás mögött meghúzódó elméleti összefüggéseket vizsgálja, kitérve a számviteli mérés és a pénzügyi teljesítmény (jövedelem) kapcsolatára, valamint bemutatja és értékeli a számviteli méréssel kapcsolatos főbb kritikákat. ____ One of the central problems of accounting theory and accounting regulation is accounting valuation, accounting as a value assignment aspect of the representation of economic phenomena. The first part of the article, setting out from the general concept of measurement, introduces the concepts of measurement and valuation as applied in accounting, describing their interconnections and basic characteristics. Following this, based on the international (IFRS) and Hungarian regulations, the paper sketches the current valuation framework used in financial reporting. The third part of the article analyses the theoretical background of the effective regulation, while also covering the connection of accounting measurement and financial performance (income), and finally it presents and evaluates the main elements of criticism concerning measurement in accounting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium . During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC− cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC− cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC− cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC − cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the beginning of airline deregulations in 1978, U.S. domestic operations were in for a period of turmoil, adjustment, vibrancy, entrepreneurship, and change. A great deal has been written about the effects of deregulation on airlines and their personnel, and on the public at large. Less attention has been paid to the effects on travel agents and on the seminal role of computerized reservations systems (CRSs) in the flowering of travel agencies. This article examines both of these phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium. During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC- cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC- cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC- cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC- cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans and animals have remarkable capabilities in keeping time and using time as a guide to orient their learning and decision making. Psychophysical models of timing and time perception have been proposed for decades and have received behavioral, anatomical and pharmacological data support. However, despite numerous studies that aimed at delineating the neural underpinnings of interval timing, a complete picture of the neurobiological network of timing in the seconds-to-minutes range remains elusive. Based on classical interval timing protocols and proposing a Timing, Immersive Memory and Emotional Regulation (TIMER) test battery, the author investigates the contributions of the dorsal and ventral hippocampus as well as the dorsolateral and the dorsomedial striatum to interval timing by comparing timing performances in mice after they received cytotoxic lesions in the corresponding brain regions. On the other hand, a timing-based theoretical framework for the emergence of conscious experience that is closely related to the function of the claustrum is proposed so as to serve both biological guidance and the research and evolution of “strong” artificial intelligence. Finally, a new “Double Saturation Model of Interval Timing” that integrates the direct- and indirect- pathways of striatum is proposed to explain the set of empirical findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The six-layered neuron structure in the cerebral cortex is the foundation for human mental abilities. In the developing cerebral cortex, neural stem cells undergo proliferation and differentiate into intermediate progenitors and neurons, a process known as embryonic neurogenesis. Disrupted embryonic neurogenesis is the root cause of a wide range of neurodevelopmental disorders, including microcephaly and intellectual disabilities. Multiple layers of regulatory networks have been identified and extensively studied over the past decades to understand this complex but extremely crucial process of brain development. In recent years, post-transcriptional RNA regulation through RNA binding proteins has emerged as a critical regulatory nexus in embryonic neurogenesis. The exon junction complex (EJC) is a highly conserved RNA binding complex composed of four core proteins, Magoh, Rbm8a, Eif4a3, and Casc3. The EJC plays a major role in regulating RNA splicing, nuclear export, subcellular localization, translation, and nonsense mediated RNA decay. Human genetic studies have associated individual EJC components with various developmental disorders. We showed previously that haploinsufficiency of Magoh causes microcephaly and disrupted neural stem cell differentiation in mouse. However, it is unclear if other EJC core components are also required for embryonic neurogenesis. More importantly, the molecular mechanism through which the EJC regulates embryonic neurogenesis remains largely unknown. Here, we demonstrated with genetically modified mouse models that both Rbm8a and Eif4a3 are required for proper embryonic neurogenesis and the formation of a normal brain. Using transcriptome and proteomic analysis, we showed that the EJC posttranscriptionally regulates genes involved in the p53 pathway, splicing and translation regulation, as well as ribosomal biogenesis. This is the first in vivo evidence suggesting that the etiology of EJC associated neurodevelopmental diseases can be ribosomopathies. We also showed that, different from other EJC core components, depletion of Casc3 only led to mild neurogenesis defects in the mouse model. However, our data suggested that Casc3 is required for embryo viability, development progression, and is potentially a regulator of cardiac development. Together, data presented in this thesis suggests that the EJC is crucial for embryonic neurogenesis and that the EJC and its peripheral factors may regulate development in a tissue-specific manner.