934 resultados para Organ transplants
Resumo:
Aortic valve stenosis (AS) is an active disease process akin to atherosclerosis, with chronic inflammation, lipid accumulation, extracellular matrix remodeling, fibrosis, and extensive calcification of the valves being characteristic features of the disease. The detailed mechanisms and pathogenesis of AS are still incompletely understood, however, and pharmacological treatments targeted toward components of the disease are not currently available. In this thesis project, my coworkers and I studied stenotic aortic valves obtained from 86 patients undergoing valve replacement for clinically significant AS. Non-stenotic control valves (n=17) were obtained from patients undergoing cardiac transplantation or from organ donors without cardiac disease. We identified a novel inflammatory factor, namely mast cell, in stenotic aortic valves and present evidence showing that this multipotent inflammatory cell may participate in the pathogenesis of AS. Using immunohistochemistry and double immunofluorescence stainings, we found that a considerable number of mast cells accumulate in stenotic valves and, in contrast to normal valves, the mast cells in diseased valves were in an activated state. Moreover, valvular mast cells contained two effective proteases, chymase and cathepsin G, which may participate in adverse remodeling of the valves either by inducing fibrosis (chymase and cathepsin G) or by degrading elastin fibers in the valves (cathepsin G). As chymase and cathepsin G are both capable of generating the profibrotic peptide angiotensin II, we also studied the expression and activity of angiotensin-converting enzyme (ACE) in the valves. Using RT-PCR, imunohistochemistry, and autoradiography, we observed a significant increase in the expression and activity of ACE in stenotic valves. Besides mast cell-derived cathepsin G, aortic valves contained other elastolytic cathepsins (S, K, and V). Using immunohistochemistry, RT-PCR, and fluorometric microassay, we showed that the expression and activity of these cathepsins were augmented in stenotic valves. Furthermore, in stenotic but not in normal valves, we observed a distinctive pattern of elastin fiber degradation and disorganization. Importantly, this characteristic elastin degradation observed in diseased valves could be mimicked by adding exogenous cathepsins to control valves, which initially contained intact elastin fibers. In stenotic leaflets, the collagen/elastin ratio was increased and correlated positively with smoking, a potent AS-accelerating factor. Indeed, cigarette smoke could also directly activate cultured mast cells and fibroblasts. Next, we analyzed the expression and activity of neutral endopeptidase (NEP), which parallels the actions of ACE in degrading bradykinin (BK) and thus inactivates antifibrotic mechanisms in tissues. Real-time RT-PCR and autoradiography revealed NEP expression and activity to be enhanced in stenotic valves compared to controls. Furthermore, both BK receptors (1 and 2) were present in aortic valves and upregulated in stenotic leaflets. Isolated valve myofibroblasts expressed NEP and BK receptors, and their upregulation occurred in response to inflammation. Finally, we observed that the complement system, a source of several proinflammatory mediators and also a potential activator of valvular mast cells, was activated in stenotic valves. Moreover, receptors for the complement-derived effectors C3a and C5a were expressed in aortic valves and in cultured aortic valve myofibroblasts, in which their expression was induced by inflammation as well as by cigarette smoke. In conclusion, our findings revealed several novel mechanisms of inflammation (mast cells and mast cell-derived mediators, complement activation), fibrosis (ACE, chymase, cathepsin G, NEP), and elastin fiber degradation (cathepsins) in stenotic aortic valves and highlighted these effectors as possible pathogenic contributors to AS. These results support the notion of AS as an active process with inflammation and extracellular matrix remodeling as its key features and identify possible new targets for medical therapy in AS.
Resumo:
The modern unilateral surgical treatment of otosclerosis started in 1956. Simultaneous bilateral surgery has not been reported in stapes surgery and in case of bilateral otosclerosis ears are operated in two different sessions. Simultaneous surgery would give the patient the opportunity to gain advantages of bilateral hearing within one session, with less time spent in hospital and on sick leave. The mechanism for vestibular symptoms and the exact end organ affected after surgery is still unveiled. This thesis presents the results of experimental simultaneous bilateral stapes surgery, and vestibular symptoms and findings before and after unilateral stapes surgery. In addition, we explore reasons for outpatient failures in otosclerosis surgery. -- Study I examines the outcome of simultaneous bilateral surgery. Hearing was evaluated with standard pure tone and speech audiograms and vestibular apparatus with visual feedback posturography (VFP) during the one-year follow-up. Subjective symptoms and quality of life were assessed with questionnaires. In study II, reasons for outpatient failures in stapes surgery were explored. Forty-seven consecutive stapedotomies and stapedectomies performed by the same surgeon were included, and the effect of failures on hearing results were analysed. Vestibular symptoms and the end organ(s) affected after stapes surgery were investigated in studies III and IV. With video-oculography (VOG), nystagmus was measured preoperatively, and at one week, one month and 3 months postoperatively in the first phase (III). In the second phase (IV), recordings were obtained some hours postoperatively. The hearing results of the simultaneous bilateral surgery were comparable with unilateral surgeries reported. Recovery from the surgery was fast. Significant improvement in performance and quality of life was noted already month after operation in subjective evaluations. Based on these results, simultaneous bilateral surgery is a suitable approach in bilateral otosclerosis Significantly more outpatient failures occurred for medical reasons in the stapedectomy group (13%) than in the stapedotomy group (2%). Stapedotomy should be favoured if outpatient surgery is planned. However, unplanned admission did not worsen the prognosis. VOG measurements in study III did not show any specific type of nystagmus in patients having vestibular symptoms postoperatively. However, VOG measurements immediately after surgery (IV) revealed nystagmus consistent with a minor disturbance of the semicircular canals in 33% of the patients. Subjectively, half of the patients reported vestibular symptoms that were probably of diverse origin, and could have originated from both otolith and semicircular canal parts of the vestibular organ. Since vestibular symptoms and signs are mild, patients may be safely discharged some hours after stapes surgery.
Resumo:
An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.
Resumo:
Esophageal and gastroesophageal junction (GEJ) adenocarcinoma is rapidly increasing disease with a pathophysiology connected to oxidative stress. Exact pre-treatment clinical staging is essential for optimal care of this lethal malignancy. The cost-effectiviness of treatment is increasingly important. We measured oxidative metabolism in the distal and proximal esophagus by myeloperoxidase activity (MPA), glutathione content (GSH), and superoxide dismutase (SOD) in 20 patients operated on with Nissen fundoplication and 9 controls during a 4-year follow-up. Further, we assessed the oxidative damage of DNA by 8-hydroxydeoxyguanosine (8-OHdG) in esophageal samples of subjects (13 Barrett s metaplasia, 6 Barrett s esophagus with high-grade dysplasia, 18 adenocarcinoma of the distal esophagus/GEJ, and 14 normal controls). We estimated the accuracy (42 patients) and preoperative prognostic value (55 patients) of PET compared with computed tomography (CT) and endoscopic ultrasound (EUS) in patients with adenocarcinoma of the esophagus/GEJ. Finally, we clarified the specialty-related costs and the utility of either radical (30 patients) or palliative (23 patients) treatment of esophageal/GEJ carcinoma by the 15 D health-related quality-of-life (HRQoL) questionnaire and the survival rate. The cost-utility of radical treatment of esophageal/GEJ carcinoma was investigated using a decision tree analysis model comparing radical, palliative, and hypothetical new treatment. We found elevated oxidative stress ( measured by MPA) and decreased antioxidant defense (measured by GSH) after antireflux surgery. This indicates that antireflux surgery is not a perfect solution for oxidative stress of the esophageal mucosa. Elevated oxidative stress in turn may partly explain why adenocarcinoma of the distal esophagus is found even after successful fundoplication. In GERD patients, proximal esophageal mucosal anti-oxidative defense seems to be defective before and even years after successful antireflux surgery. In addition, antireflux surgery apparently does not change the level of oxidative stress in the proximal esophagus, suggesting that defective mucosal anti-oxidative capacity plays a role in development of oxidative damage to the esophageal mucosa in GERD. In the malignant transformation of Barrett s esophagus an important component appears to be oxidative stress. DNA damage may be mediated by 8-OHdG, which we found to be increased in Barrett s epithelium and in high-grade dysplasia as well as in adenocarcinoma of the esophagus/GEJ compared with controls. The entire esophagus of Barrett s patients suffers from increased oxidative stress ( measured by 8-OhdG). PET is a useful tool in the staging and prognostication of adenocarcinoma of the esophagus/GEJ detecting organ metastases better than CT, although its accuracy in staging of paratumoral and distant lymph nodes is limited. Radical surgery for esophageal/GEJ carcinoma provides the greatest benefit in terms of survival, and its cost-utility appears to be the best of currently available treatments.
Resumo:
The adequacy of anesthesia has been studied since the introduction of balanced general anesthesia. Commercial monitors based on electroencephalographic (EEG) signal analysis have been available for monitoring the hypnotic component of anesthesia from the beginning of the 1990s. Monitors measuring the depth of anesthesia assess the cortical function of the brain, and have gained acceptance during surgical anesthesia with most of the anesthetic agents used. However, due to frequent artifacts, they are considered unsuitable for monitoring consciousness in intensive care patients. The assessment of analgesia is one of the cornerstones of general anesthesia. Prolonged surgical stress may lead to increased morbidity and delayed postoperative recovery. However, no validated monitoring method is currently available for evaluating analgesia during general anesthesia. Awareness during anesthesia is caused by an inadequate level of hypnosis. This rare but severe complication of general anesthesia may lead to marked emotional stress and possibly posttraumatic stress disorder. In the present series of studies, the incidence of awareness and recall during outpatient anesthesia was evaluated and compared with that of in inpatient anesthesia. A total of 1500 outpatients and 2343 inpatients underwent a structured interview. Clear intraoperative recollections were rare the incidence being 0.07% in outpatients and 0.13% in inpatients. No significant differences emerged between outpatients and inpatients. However, significantly smaller doses of sevoflurane were administered to outpatients with awareness than those without recollections (p<0.05). EEG artifacts in 16 brain-dead organ donors were evaluated during organ harvest surgery in a prospective, open, nonselective study. The source of the frontotemporal biosignals in brain-dead subjects was studied, and the resistance of bispectral index (BIS) and Entropy to the signal artifacts was compared. The hypothesis was that in brain-dead subjects, most of the biosignals recorded from the forehead would consist of artifacts. The original EEG was recorded and State Entropy (SE), Response Entropy (RE), and BIS were calculated and monitored during solid organ harvest. SE differed from zero (inactive EEG) in 28%, RE in 29%, and BIS in 68% of the total recording time (p<0.0001 for all). The median values during the operation were SE 0.0, RE 0.0, and BIS 3.0. In four of the 16 organ donors, EEG was not inactive, and unphysiologically distributed, nonreactive rhythmic theta activity was present in the original EEG signal. After the results from subjects with persistent residual EEG activity were excluded, SE, RE, and BIS differed from zero in 17%, 18%, and 62% of the recorded time, respectively (p<0.0001 for all). Due to various artifacts, the highest readings in all indices were recorded without neuromuscular blockade. The main sources of artifacts were electrocauterization, electromyography (EMG), 50-Hz artifact, handling of the donor, ballistocardiography, and electrocardiography. In a prospective, randomized study of 26 patients, the ability of Surgical Stress Index (SSI) to differentiate patients with two clinically different analgesic levels during shoulder surgery was evaluated. SSI values were lower in patients with an interscalene brachial plexus block than in patients without an additional plexus block. In all patients, anesthesia was maintained with desflurane, the concentration of which was targeted to maintain SE at 50. Increased blood pressure or heart rate (HR), movement, and coughing were considered signs of intraoperative nociception and treated with alfentanil. Photoplethysmographic waveforms were collected from the contralateral arm to the operated side, and SSI was calculated offline. Two minutes after skin incision, SSI was not increased in the brachial plexus block group and was lower (38 ± 13) than in the control group (58 ± 13, p<0.005). Among the controls, one minute prior to alfentanil administration, SSI value was higher than during periods of adequate antinociception, 59 ± 11 vs. 39 ± 12 (p<0.01). The total cumulative need for alfentanil was higher in controls (2.7 ± 1.2 mg) than in the brachial plexus block group (1.6 ± 0.5 mg, p=0.008). Tetanic stimulation to the ulnar region of the hand increased SSI significantly only among patients with a brachial plexus block not covering the site of stimulation. Prognostic value of EEG-derived indices was evaluated and compared with Transcranial Doppler Ultrasonography (TCD), serum neuron-specific enolase (NSE) and S-100B after cardiac arrest. Thirty patients resuscitated from out-of-hospital arrest and treated with induced mild hypothermia for 24 h were included. Original EEG signal was recorded, and burst suppression ratio (BSR), RE, SE, and wavelet subband entropy (WSE) were calculated. Neurological outcome during the six-month period after arrest was assessed with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). Twenty patients had a CPC of 1-2, one patient had a CPC of 3, and nine patients died (CPC 5). BSR, RE, and SE differed between good (CPC 1-2) and poor (CPC 3-5) outcome groups (p=0.011, p=0.011, p=0.008, respectively) during the first 24 h after arrest. WSE was borderline higher in the good outcome group between 24 and 48 h after arrest (p=0.050). All patients with status epilepticus died, and their WSE values were lower (p=0.022). S-100B was lower in the good outcome group upon arrival at the intensive care unit (p=0.010). After hypothermia treatment, NSE and S-100B values were lower (p=0.002 for both) in the good outcome group. The pulsatile index was also lower in the good outcome group (p=0.004). In conclusion, the incidence of awareness in outpatient anesthesia did not differ from that in inpatient anesthesia. Outpatients are not at increased risk for intraoperative awareness relative to inpatients undergoing general anesthesia. SE, RE, and BIS showed non-zero values that normally indicate cortical neuronal function, but were in these subjects mostly due to artifacts after clinical brain death diagnosis. Entropy was more resistant to artifacts than BIS. During general anesthesia and surgery, SSI values were lower in patients with interscalene brachial plexus block covering the sites of nociceptive stimuli. In detecting nociceptive stimuli, SSI performed better than HR, blood pressure, or RE. BSR, RE, and SE differed between the good and poor neurological outcome groups during the first 24 h after cardiac arrest, and they may be an aid in differentiating patients with good neurological outcomes from those with poor outcomes after out-of-hospital cardiac arrest.
Resumo:
Cardiac surgery involving cardiopulmonary bypass (CPB) induces activation of inflammation and coagulation systems and is associated with ischemia-reperfusion injury (I/R injury)in various organs including the myocardium, lungs, and intestine. I/R injury is manifested as organ dysfunction. Thrombin, the key enzyme of coagulation , plays a cenral role also in inflammation and contributes to regulation of apoptosis as well. The general aim of this thesis was to evaluate the potential of thrombin inhibition in reducing the adverse effects of I/R injury in myocardium, lungs, and intestine associated with the use of CPB and cardiac surgery. Forty five pigs were used for the studies. Two randomized blinded studies were performed. Animals underwent 75 min of normothermic CPB, 60 min of aortic clamping, and 120 min of reperfusion period. Twenty animals received iv. recombinant hirudin, a selective and effective inbitor of thrombin, or placebo. In a similar setting, twenty animals received an iv-bolus (250 IU/kg) of antithrombin (AT) or placebo. An additional group of 5 animals received 500 IU/kg in an open label setting to test dose response. Generation of thrombin (TAT), coagulation status (ACT), and hemodynamics were measured. Intramucosal pH and pCO2 were measured from the luminal surface of ileum using tonometry simultaneusly with arterial gas analysis. In addition, myocardial, lung, and intestinal biopsies were taken to quantitate leukocyte infiltration (MPO), for histological evaluation, and detection of apoptosis (TUNEL, caspase 3). In conclusion, our data suggest that r-hirudin may be an effective inhibitor of reperfusion induced thrombin generation in addition to being a direct inhibitor of preformed thrombin. Overall, the results suggest that inhibition of thrombin, beyond what is needed for efficient anticoagulation by heparin, has beneficial effects on myocardial I/R injury and hemodynamics during cardiac surgery and CPB. We showed that infusion of the thrombin inhibitor r-hirudin during reperfusion was associated with attenuated post ischemia left ventricular dysfunction and decreased systemic vascular resistance. Consequently microvascular flow was improved during ischemia-reperfusion injury. Improved recovery of myocardium during the post-ischemic reperfusion period was associated with significantly less cardiomyocyte apoptosis and with a trend in anti-inflammatory effects. Thus, inhibition of reperfusion induced thrombin may offer beneficial effects by mechanisms other than direct anticoagulant effects. AT, in doses with a significant anticoagulant effect, did not alleviate myocardial I/R injury in terms of myocardial recovery, histological inflammatory changes or post-ischemic troponin T release. Instead, AT attenuated reperfusion induced increase in pulmonary pressure after CPB. Taken the clinical significance of postoperative pulmonary hemodynamics in patients undergoing cardiopulmonary bypass, the potential positive regulatory role of AT and clinical implications needs to be studied further. Inflammatory response in the gut wall proved to be poorly associated with perturbed mucosal perfusion and the animals with the least neutrophil tissue sequestration and I/R related histological alterations tended to have the most progressive mucosal hypoperfusion. Thus, mechanisms of low-flow reperfusion injury during CPB can differ from the mechanisms seen in total ischemia reperfusion injury.
Resumo:
Background: Mulibrey nanism (MUL; Muscle-liver-brain-eye nanism; OMIM 253250) is an autosomal recessive growth disorder more prevalent in Finland than elsewhere in the world. Clinical characteristics include severe prenatal onset growth restriction, cardiopathy, multiple organ manifestations but no major neurological handicap. MUL is caused by mutations in the TRIM37 gene on chromosome 17q22-23, encoding a peroxisomal protein TRIM37 with ubiquitin E3-ligase activity. Nineteen different mutations have been detected, four of them present in the Finnish patients. Objective: This study aimed to characterize clinical and histopathological features of MUL in the national cohort of Finnish patients. Patients and methods: A total of 92 Finnish patients (age 0.7 to 77 years) participated in the clinical follow-up study. Patients hospital records and growth charts were reviewed. Physical, radiographic and laboratory examinations were performed according to a clinical protocol. Thirty patients (18 females) were treated with recombinant human GH for a median period of 5.7 years. Biopsies and autopsy samples were used for the histopathological and immunohistochemical analyses. Results: MUL patients were born small for gestational age (SGA) with immature craniofacial features after prenatal-onset growth restriction. They experienced a continuous deceleration in both height SDS and weight-for-height (WFH) postnatally. In infancy feeding difficulties and frequent pneumonias were common problems. At the time of diagnosis (median age 2.1 years) characteristic craniofacial, radiological and ocular features were the most constant findings. MUL patients showed a dramatic change in glucose metabolism with increasing age. While the children had low fasting glucose and insulin levels, 90% of the adults were insulin resistant, half had type 2 diabetes and an additional 42% showed impaired glucose tolerance (IGT). Seventy percent fulfilled the National Cholesterol Education Program (NCEP) Adult Treatment Panel III criteria for metabolic syndrome as adults. GH therapy improved pre-pubertal growth but had only minor impact on adult height (+5 cm). Interestingly, treated subjects were slimmer and had less frequent metabolic concerns as young adults. MUL patients displayed histologically a disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours present in several internal organs. A total of 232 tumorous lesions were detected in our patient cohort. The majority of the tumours showed strong expression of endothelial cell marker CD34 as well as α-smooth muscle actin (α-SMA). Fifteen of the tumours were malignant and seven of them (five Wilms tumours) occurred in the kidney. Conclusions: MUL patients present a distinct postnatal growth pattern. Short-term response of GH treatment is substantial but the long-term impact remains modest. Although MUL patients form a distinct clinical and diagnostic entity, their clinical findings vary considerably from infancy to adulthood. While failure to thrive dominates early life, MUL adults develop metabolic syndrome and have a tendency for malignancies and vascular lesions in several organs. This speaks for a central role of TRIM37 in regulation of key cellular functions, such as proliferation, migration, angiogenesis and insulin signalling.
Resumo:
The possible carcinogenic risk of immunosuppressive therapies is an important issue in everyday clinical practise. Carcinogenesis is a slow multi step procedure, thus a long latency period is needed before cancer develops. PUVA therapy is used for many skin diseases including psoriasis, early stage cutaneous T cell lymphoma, atopic dermatitis, palmoplantar pustulosis and chronic eczema. There has been concern about the increased melanoma risk associated to PUVA therapy, which has previously been associated with an increased risk on non-melanoma skin cancer, especially squamous cell carcinoma. The increased risk of basal cell carcinoma (BCC) is also documented but it is modest compared to squamous cell carcinoma (SCC). This thesis evaluated melanoma and noncutaneous cancer risk associated to PUVA, and the persistence of nonmelanoma cancer risk after the cessation of PUVA treatment. Also, the influence of photochemotherapy to the development of secondary cancers in cutaneous T cell lymphoma and the role of short term cyclosporine in later cancer development in inflammatory skin diseases were evaluated. The first three studies were performed on psoriasis patients. The risk of melanoma started to increase 15 years after the first treatment with PUVA. The risk was highest among persons who had received over 250 treatments compared to those under 250 treatments. In noncutaneous cancer, the overall risk was not increased (RR=1.08,95% CI=0.93-1.24), but significant increases in risk were found in thyroid cancer, breast cancer and in central nervous system neoplasms. These cancers were not associated to PUVA. The increased risk of SCC was associated to high cumulative UVA exposure in the PUVA regimen. The patients with high risk had no substantial exposure to other carcinogens. In BCC there was a similar but more modest tendency. In the two other studies, the risk of all secondary cancers (SIR) in CTCL patients was 1.4 (95% CI=1.0-1.9). In separate sites, the risk of lung cancer, Hodgkin and non-Hodgkin lymphomas were increased. PUVA seemed not to contribute to any extent to the appearance of these cancers. The carcinogenity of short-term cyclosporine was evaluated in inflammatory skin diseases. No increased risk for any type of cancer including the skin cancers was detected. To conclude, our studies confirm the increased skin cancer risk related to PUVA treatment in psoriasis patients. In clinical practice, this has led to a close and permanent follow-up of patients treated with PUVA. In CTCL patients, PUVA treatment did not contribute to the development of secondary cancers. We could not detect any increase in the risk of cancer in patients treated with short term cyclosporine, unlike in organ transplant patients under such long-term therapy.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Well-known risk factors include tobacco smoking and alcohol consumption. Overall survival has improved, but is still low especially in developing countries. One reason for this is the often advanced stage of the disease at the time of diagnosis, but also lack of reliable prognostic tools to enable individualized patient treatment to improve outcome. To date, the TNM classification still serves as the best disease evaluation criterion, although it does not take into account the molecular basis of the tumor. The need for surrogate molecular markers for more accurate disease prediction has increased research interests in this field. We investigated the prevalence, physical status, and viral load of human papillomavirus (HPV) in HNSCC to determine the impact of HPV on head and neck carcinogenesis. The prevalence and genotyping of HPV were assessed with an SPF10 PCR microtiter plate-based hybridization assay (DEIA), followed by a line probe-based genotyping assay. More than half of the patients had HPV DNA in their tumor specimens. Oncogenic HPV-16 was the most common type, and coinfections with other oncogenic and benign associated types also existed. HPV-16 viral load was unevenly distributed among different tumor sites; the tonsils harbored significantly greater amounts of virus than other sites. Episomal location of HPV-16 was associated with large tumors, and both integrated and mixed forms of viral DNA were detected. In this series, we could not show that the presence of HPV DNA correlated with survival. In addition, we investigated the prevalence and genotype of HPV in laryngeal carcinoma patients in a prospective Nordic multicenter study based on fresh-frozen laryngeal tumor samples to determine whether the tumors were HPV-associated. These patients were also examined and interviewed at diagnosis for known risk factors, such as tobacco smoking and alcohol consumption, and for several other habituations to elucidate their effects on patient survival. HPV analysis was performed with the same protocols as in the first study. Only 4% of the specimens harbored HPV DNA. Heavy drinking was associated with poor survival. Heavy drinking patients were also younger than nonheavy drinkers and had a more advanced stage of disease at diagnosis. Heavy drinkers had worse oral hygiene than nonheavy drinkers; however, poor oral hygiene did not have prognostic significance. History of chronic laryngitis, gastroesophageal reflux disease, and orogenital sex contacts were rare in this series. To clarify why vocal cord carcinomas seldom metastasize, we determined tumor lymph vessel (LVD) and blood vessel (BVD) densities in HNSCC patients. We used a novel lymphatic vessel endothelial marker (LYVE-1 antibody) to locate the lymphatic vessels in HNSCC samples and CD31 to detect the blood microvessels. We found carcinomas of the vocal cords to harbor less lymphatic and blood microvessels than carcinomas arising from sites other than vocal cords. The lymphatic and blood microvessel densities did not correlate with tumor size. High BVD was strongly correlated with high LVD. Neither BVD nor LVD showed any association with survival in our series. The immune system plays an important role in tumorigenesis, as neoplastic cells have to escape the cytotoxic lymphocytes in order to survive. Several candidate HLA class II alleles have been reported to be prognostic in cervical carcinomas, an epithelial malignancy resembling HNSCC. These alleles may have an impact on head and neck carcinomas as well. We determined HLA-DRB1* and -DQB1* alleles in HNSCC patients. Healthy organ donors served as controls. The Inno-LiPA reverse dot-blot kit was used to identify alleles in patient samples. No single haplotype was found to be predictive of either the risk for head and neck cancer, or the clinical course of the disease. However, alleles observed to be prognostic in cervical carcinomas showed a similar tendency in our series. DRB1*03 was associated with node-negative disease at diagnosis. DRB1*08 and DRB1*13 were associated with early-stage disease; DRB1*04 had a lower risk for tumor relapse; and DQB1*03 and DQB1*0502 were more frequent in controls than in patients. However, these associations reached only borderline significance in our HNSCC patients.
Resumo:
Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer worldwide. Despite advances in combined modality therapy (surgery, radiotherapy, chemotherapy) the 5-year survival rate in stage III and IV disease remains at 40% - 60%. Short-range Auger-electron emitters, such as In-111 and In-114m, tagged with a drug, molecule, peptide, protein or nanoparticles brought in close proximity to nuclear DNA represent a fascinating alternative for treating cancer. In this thesis, we studied the usefulness of Indium-111-bleomycin complex (In-111-BLMC) in the diagnostics and potential therapy of HNSCC using in vitro HNSCC cell lines, in vivo nude mice, and in vivo HNSCC patients. In in vitro experiments with HNSCC cell lines, the sensitivity to external beam radiation, BLM, In-111-BLMC, and In-111-Cl3 was studied using the 96-well plate clonogenic assay. The influence of BLM and In-111-BLMC on the cell cycle was measured with flow cytometry. In in vivo nude mice xenograft studies, the activity ratios of In-111-BLMC were obtained in gamma camera images. The effect of In-111-BLMC in HNSCC xenografts was studied. In in vivo patient studies, we determined the tumor uptake of In-111-BLMC with gamma camera and the radioactivity from tumor samples using In-111-BLMC with specific activity of 75, 175, or 375 MBq/mg BLM. The S values, i.e. absorbed dose in a target organ per cumulated activity in a source organ, were simulated for In-111 and In-114m. In vitro studies showed the variation of sensitivity for external beam radiation, BLM, and In-111-BLMC between HNSCC cell lines. IC50 values for BLM were 1.6-, 1.8-, and 2.1-fold higher than In-111-BLMC (40 MBq/mg BLM) in three HNSCC cell lines. Specific In-111 activity of 40 MBq/mgBLM was more effective in killing cells than specific In-111 activity of 195MBq/mgBLM (p=0.0023). In-111-Cl3 alone had no killing effect. The percentage of cells in the G2/M phase increased after exposure to BLM and especially to In-111-BLMC in the three cell lines studied, indicating a G2/M block. The tumor-seeking behavior was shown in the in vivo imaging study of xenografted mice. BLM and In-111-BLMC were more effective than NaCl in reducing xenografted tumor size in HNSCC. The uptake ratios received from gamma images in the in vivo patient study varied from 1.2 to 2.8 in malignant tumors. However, the uptake of In-111-BLMC was unaffected by increasing the injected activity. A positive correlation existed between In-111-BLMC uptake, Ki-67/MIB activity, and number of mitoses. Regarding the S values, In-114m delivered a 4-fold absorbed radiation dose into the tumor compared with In-111, and thus, In-114m-BLMC might be more effective than In-111-BLMC at the DNA level. Auger-electron emitters, such as In-111 and In-114m, might have potential in the treatment of HNSCC. Further studies are needed to develop a radiopharmaceutical agent with appropriate physical properties of the radionuclide and a suitable carrier to bring it to the targeted tissue.
Resumo:
In castrate-resistant prostate cancer (CRPC), the prevailing organ for metastasis is bone, where the survival of cancer cells is regulated by the permissive metastatic niche offered by the bone marrow. The tumour microenvironment and cellular interactions with the matrix and bone cells enable metastasis and lead to cancer cells becoming androgen resistant. Hence, 3D models that mimic CRPC in terms of an androgen deprivation state (ADS) are needed to identify the mechanisms for CPRC growth in bone and further develop therapeutic strategies.
Resumo:
Crickets have two tympanal membranes on the tibiae of each foreleg. Among several field cricket species of the genus Gryllus (Gryllinae), the posterior tympanal membrane (PTM) is significantly larger than the anterior membrane (ATM). Laser Doppler vibrometric measurements have shown that the smaller ATM does not respond as much as the PTM to sound. Hence the PTM has been suggested to be the principal tympanal acoustic input to the auditory organ. In tree crickets (Oecanthinae), the ATM is slightly larger than the PTM. Both membranes are structurally complex, presenting a series of transverse folds on their surface, which are more pronounced on the ATM than on the PTM. The mechanical response of both membranes to acoustic stimulation was investigated using microscanning laser Doppler vibrometry. Only a small portion of the membrane surface deflects in response to sound. Both membranes exhibit similar frequency responses, and move out of phase with each other, producing compressions and rarefactions of the tracheal volume backing the tympanum. Therefore, unlike field crickets, tree crickets may have four instead of two functional tympanal membranes. This is interesting in the context of the outstanding question of the role of spiracular inputs in the auditory system of tree crickets.
Resumo:
Acute pancreatitis (AP) is a common disease. Mild disease resolves spontaneously in a few days. Severe forms of the disease can lead to local complications, necrosis, and abscesses in and around the pancreas. Systemic inflammation in severe AP is associated with distant organ failures. The aim of this study is to identify genetically determined prognostic factors involved in the clinical features of AP. The study employs a candidate-gene approach, and the genes are involved in trysinogen activation in the initiation phase of the disease, as well as in the systemic inflammation as the disease proceeds. The last study examines adipokines, fat-derived hormones characterized with the capacity to modify inflammation. SPINK 1 is a gene coding trypsin activation inhibitor. Mutations N34S and P55N were determined by minisequencing methods in 371 AP patients and in 459 controls. The mutation N34S was more common in AP patients (7.8%) than in controls (2.6%). This suggests that SPINK 1 gene mutation N34S is a risk factor for AP. In the fourth study, in 12 matched pairs of patients with severe and mild AP, levels of adipokines, adiponectin, and leptin were evaluated. Plasma adipokine levels did not differ between patients with mild and severe AP. The results suggest that in AP, adipokine plasma levels are not factors predisposing to organ failures. This study identified the SPINK 1 mutation N34S to be a risk factor for AP in the general population. As AP is a multifactorial disease, and extensive genetic heterogeneity is likely, further identification of genetic factors in the disease requires larger future studies with more advanced genetic study models. Further identification of the patient characteristics associated with organ failures offers another direction of the study to achieve more detailed understanding of the severe form of AP.
Resumo:
Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder in which the cardinal symptoms arise from exocrine pancreatic insufficiency and bone marrow dysfunction. Previous studies have suggested increased risk of fatal complications among Finnish SDS infants. The genetic defect responsible for the disease was recently identified; the SBDS gene is located at chromosome 7q11 and encodes a protein that is involved in ribosome biosynthesis. The discovery of the SBDS gene has opened new insights into the pathogenesis of this multi-organ disease. This study aimed to assess phenotypic and genotypic features of Finnish patients with SDS. Seventeen Finnish patients with a clinical diagnosis of SDS were included in the study cohort. Extensive clinical, biochemical and imaging assessments were performed to elucidate the phenotypic features, and the findings were correlated with the SBDS genotype. Imaging studies included abdominal magnetic reso-nance imaging (MRI), brain MRI, cardiac echocardiography including tissue Doppler examination, and cardiac MRI. The skeletal phenotype was assessed by dual-energy X-ray absorptiometry and bone histomorphometry. Twelve patients had mutations in the SBDS gene. In MRI, a characteristic pattern of fat-replaced pancreas with occasional enhancement of scattered parenchymal foci and of pancreatic duct was noted in the SBDS mutation-positive patients while the mutation-negative patients did not have pancreatic fat accumulation. The patients with SBDS mutations had significantly reduced bone mineral density associated with low-energy peripheral fractures and vertebral compression fractures. Bone histomorphometry confirmed low-turnover osteoporosis. The patients with SBDS mutations had learning difficulties and smaller head size and brain volume than control subjects. Corpus callosum, cerebellar vermis, and pos-terior fossa structures were significantly smaller in SDS patients than in controls. Patients with SDS did not have evidence of clinical heart disease or myocardial fibrosis. However, subtle diastolic changes in the right ventricle and exercise-induced changes in the left ventricle contractile reserve were observed. This study expanded the phenotypic features of SDS to include primary low-turnover osteoporosis and structural alterations in the brain. Pancreatic MRI showed characteristic changes in the SBDS mutation-positive patients while these were absent in the mutation-negative patients, suggesting that MRI can be used to differentiate patients harbouring SBDS mutations from those without mutations. No evidence for clinical cardiac manifestations was found, but imaging studies revealed slightly altered myocardial function that may have clinical implications. These findings confirm the pleiotropic nature of SDS and underscore the importance of careful multidisciplinary follow-up of the affected individuals.
Resumo:
Pediatric renal transplantation (TX) has evolved greatly during the past few decades, and today TX is considered the standard care for children with end-stage renal disease. In Finland, 191 children had received renal transplants by October 2007, and 42% of them have already reached adulthood. Improvements in treatment of end-stage renal disease, surgical techniques, intensive care medicine, and in immunosuppressive therapy have paved the way to the current highly successful outcomes of pediatric transplantation. In children, the transplanted graft should last for decades, and normal growth and development should be guaranteed. These objectives set considerable requirements in optimizing and fine-tuning the post-operative therapy. Careful optimization of immunosuppressive therapy is crucial in protecting the graft against rejection, but also in protecting the patient against adverse effects of the medication. In the present study, the results of a retrospective investigation into individualized dosing of immunosuppresive medication, based on pharmacokinetic profiles, therapeutic drug monitoring, graft function and histology studies, and glucocorticoid biological activity determinations, are reported. Subgroups of a total of 178 patients, who received renal transplants in 1988 2006 were included in the study. The mean age at TX was 6.5 years, and approximately 26% of the patients were <2 years of age. The most common diagnosis leading to renal TX was congenital nephrosis of the Finnish type (NPHS1). Pediatric patients in Finland receive standard triple immunosuppression consisting of cyclosporine A (CsA), methylprednisolone (MP) and azathioprine (AZA) after renal TX. Optimal dosing of these agents is important to prevent rejections and preserve graft function in one hand, and to avoid the potentially serious adverse effects on the other hand. CsA has a narrow therapeutic window and individually variable pharmacokinetics. Therapeutic monitoring of CsA is, therefore, mandatory. Traditionally, CsA monitoring has been based on pre-dose trough levels (C0), but recent pharmacokinetic and clinical studies have revealed that the immunosuppressive effect may be related to diurnal CsA exposure and blood CsA concentration 0-4 hours after dosing. The two-hour post-dose concentration (C2) has proved a reliable surrogate marker of CsA exposure. Individual starting doses of CsA were analyzed in 65 patients. A recommended dose based on a pre-TX pharmacokinetic study was calculated for each patient by the pre-TX protocol. The predicted dose was clearly higher in the youngest children than in the older ones (22.9±10.4 and 10.5±5.1 mg/kg/d in patients <2 and >8 years of age, respectively). The actually administered oral doses of CsA were collected for three weeks after TX and compared to the pharmacokinetically predicted dose. After the TX, dosing of CsA was adjusted according to clinical parameters and blood CsA trough concentration. The pharmacokinetically predicted dose and patient age were the two significant parameters explaining post-TX doses of CsA. Accordingly, young children received significantly higher oral doses of CsA than the older ones. The correlation to the actually administered doses after TX was best in those patients, who had a predicted dose clearly higher or lower (> ±25%) than the average in their age-group. Due to the great individual variation in pharmacokinetics standardized dosing of CsA (based on body mass or surface area) may not be adequate. Pre-Tx profiles are helpful in determining suitable initial CsA doses. CsA monitoring based on trough and C2 concentrations was analyzed in 47 patients, who received renal transplants in 2001 2006. C0, C2 and experienced acute rejections were collected during the post-TX hospitalization, and also three months after TX when the first protocol core biopsy was obtained. The patients who remained rejection free had slightly higher C2 concentrations, especially very early after TX. However, after the first two weeks also the trough level was higher in the rejection-free patients than in those with acute rejections. Three months after TX the trough level was higher in patients with normal histology than in those with rejection changes in the routine biopsy. Monitoring of both the trough level and C2 may thus be warranted to guarantee sufficient peak concentration and baseline immunosuppression on one hand and to avoid over-exposure on the other hand. Controlling of rejection in the early months after transplantation is crucial as it may contribute to the development of long-term allograft nephropathy. Recently, it has become evident that immunoactivation fulfilling the histological criteria of acute rejection is possible in a well functioning graft with no clinical sings or laboratory perturbations. The influence of treatment of subclinical rejection, diagnosed in 3-month protocol biopsy, to graft function and histology 18 months after TX was analyzed in 22 patients and compared to 35 historical control patients. The incidence of subclinical rejection at three months was 43%, and the patients received a standard rejection treatment (a course of increased MP) and/or increased baseline immunosuppression, depending on the severity of rejection and graft function. Glomerular filtration rate (GFR) at 18 months was significantly better in the patients who were screened and treated for subclinical rejection in comparison to the historical patients (86.7±22.5 vs. 67.9±31.9 ml/min/1.73m2, respectively). The improvement was most remarkable in the youngest (<2 years) age group (94.1±11.0 vs. 67.9±26.8 ml/min/1.73m2). Histological findings of chronic allograft nephropathy were also more common in the historical patients in the 18-month protocol biopsy. All pediatric renal TX patients receive MP as a part of the baseline immunosuppression. Although the maintenance dose of MP is very low in the majority of the patients, the well-known steroid-related adverse affects are not uncommon. It has been shown in a previous study in Finnish pediatric TX patients that steroid exposure, measured as area under concentration-time curve (AUC), rather than the dose correlates with the adverse effects. In the present study, MP AUC was measured in sixteen stable maintenance patients, and a correlation with excess weight gain during 12 months after TX as well as with height deficit was found. A novel bioassay measuring the activation of glucocorticoid receptor dependent transcription cascade was also employed to assess the biological effect of MP. Glucocorticoid bioactivity was found to be related to the adverse effects, although the relationship was not as apparent as that with serum MP concentration. The findings in this study support individualized monitoring and adjustment of immunosuppression based on pharmacokinetics, graft function and histology. Pharmacokinetic profiles are helpful in estimating drug exposure and thus identifying the patients who might be at risk for excessive or insufficient immunosuppression. Individualized doses and monitoring of blood concentrations should definitely be employed with CsA, but possibly also with steroids. As an alternative to complete steroid withdrawal, individualized dosing based on drug exposure monitoring might help in avoiding the adverse effects. Early screening and treatment of subclinical immunoactivation is beneficial as it improves the prospects of good long-term graft function.