985 resultados para Optical bias
Resumo:
We present a novel way of interacting with an immersive virtual environment which involves inexpensive motion-capture using the Wii Remote®. A software framework is also presented to visualize and share this information across two remote CAVETM-like environments. The resulting application can be used to assist rehabilitation by sending motion information across remote sites. The application’s software and hardware components are scalable enough to be used on a desktop computer when home-based rehabilitation is preferred.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
Infections involving Salmonella enterica subsp. enterica serovars have serious animal and human health implications; causing gastroenteritis in humans and clinical symptoms, such as diarrhoea and abortion, in livestock. In this study an optical genetic mapping technique was used to screen 20 field isolate strains from four serovars implicated in disease outbreaks. The technique was able to distinguish between the serovars and the available sequenced strains and group them in agreement with similar data from microarrays and PFGE. The optical maps revealed variation in genome maps associated with antimicrobial resistance and prophage content in S. Typhimurium, and separated the S. Newport strains into two clear geographical lineages defined by the presence of prophage sequences. The technique was also able to detect novel insertions that may have had effects on the central metabolism of some strains. Overall optical mapping allowed a greater level of differentiation of genomic content and spatial information than more traditional typing methods.
Resumo:
Platinum is one of the most common coatings used to optimize mirror reflectivity in soft X-ray beamlines. Normal operation results in optics contamination by carbon-based molecules present in the residual vacuum of the beamlines. The reflectivity reduction induced by a carbon layer at the mirror surface is a major problem in synchrotron radiation sources. A time-dependent photoelectron spectroscopy study of the chemical reactions which take place at the Pt(111) surface under operating conditions is presented. It is shown that the carbon contamination layer growth can be stopped and reversed by low partial pressures of oxygen for optics operated in intense photon beams at liquidnitrogen temperature. For mirrors operated at room temperature the carbon contamination observed for equivalent partial pressures of CO is reduced and the effects of oxygen are observed on a long time scale.
Resumo:
Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genomewide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life history traits on substitution rates. KEY WORDS: Generation time, genome evolution, metabolic rate, sperm competition.
Resumo:
Ground-based aerosol optical depth (AOD) climatologies at three high-altitude sites in Switzerland (Jungfraujoch and Davos) and Southern Germany (Hohenpeissenberg) are updated and re-calibrated for the period 1995 – 2010. In addition, AOD time-series are augmented with previously unreported data, and are homogenized for the first time. Trend analysis revealed weak AOD trends (λ = 500 nm) at Jungfraujoch (JFJ; +0.007 decade-1), Davos (DAV; +0.002 decade-1) and Hohenpeissenberg (HPB; -0.011 decade-1) where the JFJ and HPB trends were statistically significant at the 95% and 90% confidence levels. However, a linear trend for the JFJ 1995 – 2005 period was found to be more appropriate than for 1995 – 2010 due to the influence of stratospheric AOD which gave a trend -0.003 decade-1 (significant at 95% level). When correcting for a recently available stratospheric AOD time-series, accounting for Pinatubo (1991) and more recent volcanic eruptions, the 1995 – 2010 AOD trends decreased slightly at DAV and HPB but remained weak at +0.000 decade-1 and -0.013 decade-1 (significant at 95% level). The JFJ 1995 – 2005 AOD time-series similarly decreased to -0.003 decade-1 (significant at 95% level). We conclude that despite a more detailed re40 analysis of these three time-series, which have been extended by five years to the end of 2010, a significant decrease in AOD at these three high-altitude sites has still not been observed.
Resumo:
The purpose of the study is to seek a better understanding of the investment allocation behaviour of the real estate mutual funds by focusing on asset allocation at the country level. Analysing the country allocation of 553 real estate mutual funds domiciled in 20 countries, we attempt to trace how investment bias exists across countries and affects their country allocations. Our results evidence the existence of disproportionate country allocation to their domestic markets (domestic bias) and to each foreign market (foreign bias). We also find each bias is influenced by different sets of variables: real estate market influences for domestic bias and familiarity influences for foreign bias. This difference in factors influential for each bias in part explains the conflated relationship between the two biases.
Resumo:
The cold equatorial SST bias in the tropical Pacific that is persistent in many coupled OAGCMs severely impacts the fidelity of the simulated climate and variability in this key region, such as the ENSO phenomenon. The classical bias analysis in these models usually concentrates on multi-decadal to centennial time series needed to obtain statistically robust features. Yet, this strategy cannot fully explain how the models errors were generated in the first place. Here, we use seasonal re-forecasts (hindcasts) to track back the origin of this cold bias. As such hindcasts are initialized close to observations, the transient drift leading to the cold bias can be analyzed to distinguish pre-existing errors from errors responding to initial ones. A time sequence of processes involved in the advent of the final mean state errors can then be proposed. We apply this strategy to the ENSEMBLES-FP6 project multi-model hindcasts of the last decades. Four of the five AOGCMs develop a persistent equatorial cold tongue bias within a few months. The associated systematic errors are first assessed separately for the warm and cold ENSO phases. We find that the models are able to reproduce either El Niño or La Niña close to observations, but not both. ENSO composites then show that the spurious equatorial cooling is maximum for El Niño years for the February and August start dates. For these events and at this time of the year, zonal wind errors in the equatorial Pacific are present from the beginning of the simulation and are hypothesized to be at the origin of the equatorial cold bias, generating too strong upwelling conditions. The systematic underestimation of the mixed layer depth in several models can also amplify the growth of the SST bias. The seminal role of these zonal wind errors is further demonstrated by carrying out ocean-only experiments forced by the AOCGCMs daily 10-meter wind. In a case study, we show that for several models, this forcing is sufficient to reproduce the main SST error patterns seen after 1 month in the AOCGCM hindcasts.
Resumo:
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Resumo:
An assessment of the fifth Coupled Models Intercomparison Project (CMIP5) models’ simulation of the near-surface westerly wind jet position and strength over the Atlantic, Indian and Pacific sectors of the Southern Ocean is presented. Compared with reanalysis climatologies there is an equatorward bias of 3.7° (inter-model standard deviation of ± 2.2°) in the ensemble mean position of the zonal mean jet. The ensemble mean strength is biased slightly too weak, with the largest biases over the Pacific sector (-1.6±1.1 m/s, 27 -22%). An analysis of atmosphere-only (AMIP) experiments indicates that 41% of the zonal mean position bias comes from coupling of the ocean/ice models to the atmosphere. The response to future emissions scenarios (RCP4.5 and RCP8.5) is characterized by two phases: (i) the period of most rapid ozone recovery (2000-2049) during which there is insignificant change in summer; and (ii) the period 2050-2098 during which RCP4.5 simulations show no significant change but RCP8.5 simulations show poleward shifts (0.30, 0.19 and 0.28°/decade over the Atlantic, Indian and Pacific sectors respectively), and increases in strength (0.06, 0.08 and 0.15 m/s/decade respectively). The models with larger equatorward position biases generally show larger poleward shifts (i.e. state dependence). This inter-model relationship is strongest over the Pacific sector (r=-0.89) and insignificant over the Atlantic sector (r=-0.50). However, an assessment of jet structure shows that over the Atlantic sector jet shift is significantly correlated with jet width whereas over the Pacific sector the distance between the sub-polar and sub-tropical westerly jets appears to be more important.
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
Purpose – The purpose of this paper is to test the hypothesis that investment decision making in the UK direct property market does not conform to the assumption of economic rationality underpinning portfolio theory. Design/methodology/approach – The developing behavioural real estate paradigm is used to challenge the idea that investor “man” is able to perform with economic rationality, specifically with reference to the analysis of the spatial dispersion of the entire UK “investible stock” and “investible locations” against observed spatial patterns of institutional investment. Location quotients are derived, combining different data sets. Findings – Considerably greater variation in institutional property holdings is found across the UK than would be expected given the economic and stock characteristics of local areas. This appears to provide evidence of irrationality (in the strict traditional economic sense) in the behaviour of institutional investors, with possible herding underpinning levels of investment that cannot be explained otherwise. Research limitations/implications – Over time a lack of distinction has developed between the cause and effect of comparatively low levels of development and institutional property investment across the regions. A critical examination of decision making and behaviour in practice could break this cycle, and could in turn promote regional economic growth. Originality/value – The entire “population” of observations is used to demonstrate the relationships between economic theory and investor performance exploring, for the first time, stock and local area characteristics.
Resumo:
We present a detailed case study of the characteristics of auroral forms that constitute the first ionospheric signatures of substorm expansion phase onset. Analysis of the optical frequency and along-arc (azimuthal) wave number spectra provides the strongest constraint to date on the potential mechanisms and instabilities in the near-Earth magnetosphere that accompany auroral onset and which precede poleward arc expansion and auroral breakup. We evaluate the frequency and growth rates of the auroral forms as a function of azimuthal wave number to determine whether these wave characteristics are consistent with current models of the substorm onset mechanism. We find that the frequency, spatial scales, and growth rates of the auroral forms are most consistent with the cross-field current instability or a ballooning instability, most likely triggered close to the inner edge of the ion plasma sheet. This result is supportive of a near-Earth plasma sheet initiation of the substorm expansion phase. We also present evidence that the frequency and phase characteristics of the auroral undulations may be generated via resonant processes operating along the geomagnetic field. Our observations provide the most powerful constraint to date on the ionospheric manifestation of the physical processes operating during the first few minutes around auroral substorm onset.