958 resultados para Open Data-bank
Resumo:
The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.
Resumo:
In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.
Resumo:
Turrialba is one of the largest and most active stratovolcanoes in the Central Cordillera of Costa Rica and an excellent target for validation of satellite data using ground based measurements due to its high elevation, relative ease of access, and persistent elevated SO2 degassing. The Ozone Monitoring Instrument (OMI) aboard the Aura satellite makes daily global observations of atmospheric trace gases and it is used in this investigation to obtain volcanic SO2 retrievals in the Turrialba volcanic plume. We present and evaluate the relative accuracy of two OMI SO2 data analysis procedures, the automatic Band Residual Index (BRI) technique and the manual Normalized Cloud-mass (NCM) method. We find a linear correlation and good quantitative agreement between SO2 burdens derived from the BRI and NCM techniques, with an improved correlation when wet season data are excluded. We also present the first comparisons between volcanic SO2 emission rates obtained from ground-based mini-DOAS measurements at Turrialba and three new OMI SO2 data analysis techniques: the MODIS smoke estimation, OMI SO2 lifetime, and OMI SO2 transect techniques. A robust validation of OMI SO2 retrievals was made, with both qualitative and quantitative agreements under specific atmospheric conditions, proving the utility of satellite measurements for estimating accurate SO2 emission rates and monitoring passively degassing volcanoes.
Resumo:
Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.
Resumo:
Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.
Resumo:
This paper describes the open source framework MARVIN for rapid application development in the field of biomedical and clinical research. MARVIN applications consist of modules that can be plugged together in order to provide the functionality required for a specific experimental scenario. Application modules work on a common patient database that is used to store and organize medical data as well as derived data. MARVIN provides a flexible input/output system with support for many file formats including DICOM, various 2D image formats and surface mesh data. Furthermore, it implements an advanced visualization system and interfaces to a wide range of 3D tracking hardware. Since it uses only highly portable libraries, MARVIN applications run on Unix/Linux, Mac OS X and Microsoft Windows.
DIMENSION REDUCTION FOR POWER SYSTEM MODELING USING PCA METHODS CONSIDERING INCOMPLETE DATA READINGS
Resumo:
Principal Component Analysis (PCA) is a popular method for dimension reduction that can be used in many fields including data compression, image processing, exploratory data analysis, etc. However, traditional PCA method has several drawbacks, since the traditional PCA method is not efficient for dealing with high dimensional data and cannot be effectively applied to compute accurate enough principal components when handling relatively large portion of missing data. In this report, we propose to use EM-PCA method for dimension reduction of power system measurement with missing data, and provide a comparative study of traditional PCA and EM-PCA methods. Our extensive experimental results show that EM-PCA method is more effective and more accurate for dimension reduction of power system measurement data than traditional PCA method when dealing with large portion of missing data set.
Resumo:
Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.
Resumo:
One-hundred years ago, in 1914, male voters in Montana (MT) extended suffrage (voting rights) to women six years before the 19th Amendment to the US Constitution was ratified and provided that right to women in all states. The long struggle for women’s suffrage was energized in the progressive era and Jeanette Rankin of Missoula emerged as a leader of the campaign; in 1912 both major MT political party platforms supported women suffrage. In the 1914 election, 41,000 male voters supported woman suffrage while nearly 38,000 opposed it. MT was not only ahead of the curve on women suffrage, but just two years later in 1916 elected Jeanette Rankin as the first woman ever elected to the United States Congress. Rankin became a national leader for women's equality. In her commitment to equality, she opposed US entry into World War I, partially because she said she could not support men being made to go to war if women were not allowed to serve alongside them. During MT’s initial progressive era, women in MT not only pursued equality for themselves (the MT Legislature passed an equal pay act in 1919), but pursued other social improvements, such as temperance/prohibition. Well-known national women leaders such as Carrie Nation and others found a welcome in MT during the period. Women's role in the trade union movement was evidenced in MT by the creation of the Women's Protective Union in Butte, the first union in America dedicated solely to women workers. But Rankin’s defeat following her vote against World War I was used as a way for opponents to advocate a conservative, traditionalist perspective on women's rights in MT. Just as we then entered a period in MT where the “copper collar” was tightened around MT economically and politically by the Anaconda Company and its allies, we also found a different kind of conservative, traditionalist collar tightened around the necks of MT women. The recognition of women's role during World War II, represented by “Rosie the Riveter,” made it more difficult for that conservative, traditionalist approach to be forever maintained. In addition, women's role in MT agriculture – family farms and ranches -- spoke strongly to the concept of equality, as farm wives were clearly active partners in the agricultural enterprises. But rural MT was, by and large, the bastion of conservative values relative to the position of women in society. As the period of “In the Crucible of Change” began, the 1965 MT Legislature included only three women. In 1967 and 1969 only one woman legislator served. In 1971 the number went up to two, including one of our guests, Dorothy Bradley. It was only after the Constitutional Convention, which featured 19 women delegates, that the barrier was broken. The 1973 Legislature saw 9 women elected. The 1975 and 1977 sessions had 14 women legislators; 15 were elected for the 1979 session. At that time progressive women and men in the Legislature helped implement the equality provisions of the new MT Constitution, ratified the federal Equal Rights Amendment in 1974, and held back national and local conservatives forces which sought in later Legislatures to repeal that ratification. As with the national movement at the time, MT women sought and often succeeded in adopting legal mechanisms that protected women’s equality, while full equality in the external world remained (and remains) a treasured objective. The story of the re-emergence of Montana’s women’s movement in the 1970s is discussed in this chapter by three very successful and prominent women who were directly involved in the effort: Dorothy Bradley, Marilyn Wessel, and Jane Jelinski. Their recollections of the political, sociological and cultural path Montana women pursued in the 1970s and the challenges and opposition they faced provide an insider’s perspective of the battle for equality for women under the Big Sky “In the Crucible of Change.” Dorothy Bradley grew up in Bozeman, Montana; received her Bachelor of Arts Phi Beta Kappa from Colorado College, Colorado Springs, in 1969 with a Distinction in Anthropology; and her Juris Doctor from American University in Washington, D.C., in 1983. In 1970, at the age of 22, following the first Earth Day and running on an environmental platform, Ms. Bradley won a seat in the 1971 Montana House of Representatives where she served as the youngest member and only woman. Bradley established a record of achievement on environmental & progressive legislation for four terms, before giving up the seat to run a strong second to Pat Williams for the Democratic nomination for an open seat in Montana’s Western Congressional District. After becoming an attorney and an expert on water law, she returned to the Legislature for 4 more terms in the mid-to-late 1980s. Serving a total of eight terms, Dorothy was known for her leadership on natural resources, tax reform, economic development, and other difficult issues during which time she gained recognition for her consensus-building approach. Campaigning by riding her horse across the state, Dorothy was the Democratic nominee for Governor in 1992, losing the race by less than a percentage point. In 1993 she briefly taught at a small rural school next to the Northern Cheyenne Indian Reservation. She was then hired as the Director of the Montana University System Water Center, an education and research arm of Montana State University. From 2000 - 2008 she served as the first Gallatin County Court Administrator with the task of collaboratively redesigning the criminal justice system. She currently serves on One Montana’s Board, is a National Advisor for the American Prairie Foundation, and is on NorthWestern Energy’s Board of Directors. Dorothy was recognized with an Honorary Doctorate from her alma mater, Colorado College, was named Business Woman of the Year by the Bozeman Chamber of Commerce and MSU Alumni Association, and was Montana Business and Professional Women’s Montana Woman of Achievement. Marilyn Wessel was born in Iowa, lived and worked in Los Angeles, California, and Washington, D.C. before moving to Bozeman in 1972. She has an undergraduate degree in journalism from Iowa State University, graduate degree in public administration from Montana State University, certification from the Harvard University Institute for Education Management, and served a senior internship with the U.S. Congress, Montana delegation. In Montana Marilyn has served in a number of professional positions, including part-time editor for the Montana Cooperative Extension Service, News Director for KBMN Radio, Special Assistant to the President and Director of Communications at Montana State University, Director of University Relations at Montana State University and Dean and Director of the Museum of the Rockies at MSU. Marilyn retired from MSU as Dean Emeritus in 2003. Her past Board Service includes Montana State Merit System Council, Montana Ambassadors, Vigilante Theater Company, Montana State Commission on Practice, Museum of the Rockies, Helena Branch of the Ninth District Federal Reserve Bank, Burton K. Wheeler Center for Public Policy, Bozeman Chamber of Commerce, and Friends of KUSM Public Television. Marilyn’s past publications and productions include several articles on communications and public administration issues as well as research, script preparation and presentation of several radio documentaries and several public television programs. She is co-author of one book, 4-H An American Idea: A History of 4-H. Marilyn’s other past volunteer activities and organizations include Business and Professional Women, Women's Political Caucus, League of Women Voters, and numerous political campaigns. She is currently engaged professionally in museum-related consulting and part-time teaching at Montana State University as well as serving on the Editorial Board of the Bozeman Daily Chronicle and a member of Pilgrim Congregational Church and Family Promise. Marilyn and her husband Tom, a retired MSU professor, live in Bozeman. She enjoys time with her children and grandchildren, hiking, golf, Italian studies, cooking, gardening and travel. Jane Jelinski is a Wisconsin native, with a BA from Fontbonne College in St. Louis, MO who taught fifth and seventh grades prior to moving to Bozeman in 1973. A stay-at-home mom with a five year old daughter and an infant son, she was promptly recruited by the Gallatin Women’s Political Caucus to conduct a study of Sex-Role Stereotyping in K Through 6 Reading Text Books in the Bozeman School District. Sociologist Dr. Louise Hale designed the study and did the statistical analysis and Jane read all the texts, entered the data and wrote the report. It was widely disseminated across Montana and received attention of the press. Her next venture into community activism was to lead the successful effort to downzone her neighborhood which was under threat of encroaching business development. Today the neighborhood enjoys the protections of a Historic Preservation District. During this time she earned her MPA from Montana State University. Subsequently Jane founded the Gallatin Advocacy Program for Developmentally Disabled Adults in 1978 and served as its Executive Director until her appointment to the Gallatin County Commission in 1984, a controversial appointment which she chronicled in the Fall issue of the Gallatin History Museum Quarterly. Copies of the issue can be ordered through: http://gallatinhistorymuseum.org/the-museum-bookstore/shop/. Jane was re-elected three times as County Commissioner, serving fourteen years. She was active in the Montana Association of Counties (MACO) and was elected its President in 1994. She was also active in the National Association of Counties, serving on numerous policy committees. In 1998 Jane resigned from the County Commission 6 months before the end of her final term to accept the position of Assistant Director of MACO, from where she lobbied for counties, provided training and research for county officials, and published a monthly newsletter. In 2001 she became Director of the MSU Local Government Center where she continued to provide training and research for county and municipal officials across MT. There she initiated the Montana Mayors Academy in partnership with MMIA. She taught State and Local Government, Montana Politics and Public Administration in the MSU Political Science Department before retiring in 2008. Jane has been married to Jack for 46 years, has two grown children and three grandchildren.
Resumo:
This study evaluates the clinical applicability of administering sodium nitroprusside by a closed-loop titration system compared with a manually adjusted system. The mean arterial pressure (MAP) was registered every 10 and 30 sec during the first 150 min after open heart surgery in 20 patients (group 1: computer regulation) and in ten patients (group 2: manual regulation). The results (16,343 and 2,912 data points in groups 1 and 2, respectively), were then analyzed in four time frames and five pressure ranges to indicate clinical efficacy. Sixty percent of the measured MAP in both groups was within the desired +/- 10% during the first 10 min. Thereafter until the end of observation, the MAP was maintained within +/- 10% of the desired set-point 90% of the time in group 1 vs. 60% of the time in group 2. One percent and 11% of data points were +/- 20% from the set-point in groups 1 and 2, respectively (p less than .05, chi-square test). The computer-assisted therapy provided better control of MAP, was safe to use, and helped to reduce nursing demands.
Resumo:
BACKGROUND: Gene expression analysis has emerged as a major biological research area, with real-time quantitative reverse transcription PCR (RT-QPCR) being one of the most accurate and widely used techniques for expression profiling of selected genes. In order to obtain results that are comparable across assays, a stable normalization strategy is required. In general, the normalization of PCR measurements between different samples uses one to several control genes (e.g. housekeeping genes), from which a baseline reference level is constructed. Thus, the choice of the control genes is of utmost importance, yet there is not a generally accepted standard technique for screening a large number of candidates and identifying the best ones. RESULTS: We propose a novel approach for scoring and ranking candidate genes for their suitability as control genes. Our approach relies on publicly available microarray data and allows the combination of multiple data sets originating from different platforms and/or representing different pathologies. The use of microarray data allows the screening of tens of thousands of genes, producing very comprehensive lists of candidates. We also provide two lists of candidate control genes: one which is breast cancer-specific and one with more general applicability. Two genes from the breast cancer list which had not been previously used as control genes are identified and validated by RT-QPCR. Open source R functions are available at http://www.isrec.isb-sib.ch/~vpopovic/research/ CONCLUSION: We proposed a new method for identifying candidate control genes for RT-QPCR which was able to rank thousands of genes according to some predefined suitability criteria and we applied it to the case of breast cancer. We also empirically showed that translating the results from microarray to PCR platform was achievable.
Resumo:
We describe the use of log file analysis to investigate whether the use of CSCL applications corresponds to its didactical purposes. Exemplarily we examine the use of the web-based system CommSy as software support for project-oriented university courses. We present two findings: (1) We suggest measures to shape the context of CSCL applications and support their initial and continuous use. (2) We show how log files can be used to analyze how, when and by whom a CSCL system is used and thus help to validate further empirical findings. However, log file analyses can only be interpreted reasonably when additional data concerning the context of use is available.
Resumo:
BACKGROUND Ankle arthrodesis results in measurable improvements in terms of pain and function in patients with end-stage ankle arthritis. Arthroscopic ankle arthrodesis has gained increasing popularity, with reports of shorter hospital stays, shorter time to solid fusion, and equivalent union rates when compared with open arthrodesis. However, there remains a lack of high-quality prospective data. METHODS We evaluated the results of open and arthroscopic ankle arthrodesis in a comparative case series of patients who were managed at two institutions and followed for two years. The primary outcome was the Ankle Osteoarthritis Scale score, and secondary outcomes included the Short Form-36 physical and mental component scores, the length of hospital stay, and radiographic alignment. There were thirty patients in each group. RESULTS Both groups showed significant improvement in the Ankle Osteoarthritis Scale score and the Short Form-36 physical component score at one and two years. There was significantly greater improvement in the Ankle Osteoarthritis Scale score at one year and two years and shorter hospital stay in the arthroscopic arthrodesis group. Complications, surgical time, and radiographic alignment were similar between the two groups. CONCLUSIONS Open and arthroscopic ankle arthrodesis were associated with significant improvement in terms of pain and function as measured with the Ankle Osteoarthritis Scale score. Arthroscopic arthrodesis resulted in a shorter hospital stay and showed better outcomes at one and two years.
Resumo:
Background: Statistical shape models are widely used in biomedical research. They are routinely implemented for automatic image segmentation or object identification in medical images. In these fields, however, the acquisition of the large training datasets, required to develop these models, is usually a time-consuming process. Even after this effort, the collections of datasets are often lost or mishandled resulting in replication of work. Objective: To solve these problems, the Virtual Skeleton Database (VSD) is proposed as a centralized storage system where the data necessary to build statistical shape models can be stored and shared. Methods: The VSD provides an online repository system tailored to the needs of the medical research community. The processing of the most common image file types, a statistical shape model framework, and an ontology-based search provide the generic tools to store, exchange, and retrieve digital medical datasets. The hosted data are accessible to the community, and collaborative research catalyzes their productivity. Results: To illustrate the need for an online repository for medical research, three exemplary projects of the VSD are presented: (1) an international collaboration to achieve improvement in cochlear surgery and implant optimization, (2) a population-based analysis of femoral fracture risk between genders, and (3) an online application developed for the evaluation and comparison of the segmentation of brain tumors. Conclusions: The VSD is a novel system for scientific collaboration for the medical image community with a data-centric concept and semantically driven search option for anatomical structures. The repository has been proven to be a useful tool for collaborative model building, as a resource for biomechanical population studies, or to enhance segmentation algorithms.