993 resultados para OPTICAL-ELEMENTS
Resumo:
Many finite elements used in structural analysis possess deficiencies like shear locking, incompressibility locking, poor stress predictions within the element domain, violent stress oscillation, poor convergence etc. An approach that can probably overcome many of these problems would be to consider elements in which the assumed displacement functions satisfy the equations of stress field equilibrium. In this method, the finite element will not only have nodal equilibrium of forces, but also have inner stress field equilibrium. The displacement interpolation functions inside each individual element are truncated polynomial solutions of differential equations. Such elements are likely to give better solutions than the existing elements.In this thesis, a new family of finite elements in which the assumed displacement function satisfies the differential equations of stress field equilibrium is proposed. A general procedure for constructing the displacement functions and use of these functions in the generation of elemental stiffness matrices has been developed. The approach to develop field equilibrium elements is quite general and various elements to analyse different types of structures can be formulated from corresponding stress field equilibrium equations. Using this procedure, a nine node quadrilateral element SFCNQ for plane stress analysis, a sixteen node solid element SFCSS for three dimensional stress analysis and a four node quadrilateral element SFCFP for plate bending problems have been formulated.For implementing these elements, computer programs based on modular concepts have been developed. Numerical investigations on the performance of these elements have been carried out through standard test problems for validation purpose. Comparisons involving theoretical closed form solutions as well as results obtained with existing finite elements have also been made. It is found that the new elements perform well in all the situations considered. Solutions in all the cases converge correctly to the exact values. In many cases, convergence is faster when compared with other existing finite elements. The behaviour of field consistent elements would definitely generate a great deal of interest amongst the users of the finite elements.
Resumo:
Alkylation of phenol with methanol has been carried out over Sn-La and Sn-Sm mixed oxides of varying compositions at 623 K in a vapour phase flow reactor. It is found that the product selectivity is greatly influenced by the acid-base properties of the catalysts. Ortho-cresol formation is favoured over catalysts with weak acid sites whereas formation of 2,6-xylenol occurs in the presence of stronger acid sites. The cyclohexanol decomposition reaction and titrimetric method using Hammett indicators have been employed to elucidate the acid-base properties of the catalysts.
Resumo:
Department of Polymer Science and Rubber Technology,Cochin University of Science and Technology
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
Sharing of information with those in need of it has always been an idealistic goal of networked environments. With the proliferation of computer networks, information is so widely distributed among systems, that it is imperative to have well-organized schemes for retrieval and also discovery. This thesis attempts to investigate the problems associated with such schemes and suggests a software architecture, which is aimed towards achieving a meaningful discovery. Usage of information elements as a modelling base for efficient information discovery in distributed systems is demonstrated with the aid of a novel conceptual entity called infotron.The investigations are focused on distributed systems and their associated problems. The study was directed towards identifying suitable software architecture and incorporating the same in an environment where information growth is phenomenal and a proper mechanism for carrying out information discovery becomes feasible. An empirical study undertaken with the aid of an election database of constituencies distributed geographically, provided the insights required. This is manifested in the Election Counting and Reporting Software (ECRS) System. ECRS system is a software system, which is essentially distributed in nature designed to prepare reports to district administrators about the election counting process and to generate other miscellaneous statutory reports.Most of the distributed systems of the nature of ECRS normally will possess a "fragile architecture" which would make them amenable to collapse, with the occurrence of minor faults. This is resolved with the help of the penta-tier architecture proposed, that contained five different technologies at different tiers of the architecture.The results of experiment conducted and its analysis show that such an architecture would help to maintain different components of the software intact in an impermeable manner from any internal or external faults. The architecture thus evolved needed a mechanism to support information processing and discovery. This necessitated the introduction of the noveI concept of infotrons. Further, when a computing machine has to perform any meaningful extraction of information, it is guided by what is termed an infotron dictionary.The other empirical study was to find out which of the two prominent markup languages namely HTML and XML, is best suited for the incorporation of infotrons. A comparative study of 200 documents in HTML and XML was undertaken. The result was in favor ofXML.The concept of infotron and that of infotron dictionary, which were developed, was applied to implement an Information Discovery System (IDS). IDS is essentially, a system, that starts with the infotron(s) supplied as clue(s), and results in brewing the information required to satisfy the need of the information discoverer by utilizing the documents available at its disposal (as information space). The various components of the system and their interaction follows the penta-tier architectural model and therefore can be considered fault-tolerant. IDS is generic in nature and therefore the characteristics and the specifications were drawn up accordingly. Many subsystems interacted with multiple infotron dictionaries that were maintained in the system.In order to demonstrate the working of the IDS and to discover the information without modification of a typical Library Information System (LIS), an Information Discovery in Library Information System (lDLIS) application was developed. IDLIS is essentially a wrapper for the LIS, which maintains all the databases of the library. The purpose was to demonstrate that the functionality of a legacy system could be enhanced with the augmentation of IDS leading to information discovery service. IDLIS demonstrates IDS in action. IDLIS proves that any legacy system could be augmented with IDS effectively to provide the additional functionality of information discovery service.Possible applications of IDS and scope for further research in the field are covered.
Resumo:
Nonlinear optical processes in organic compounds have attracted considerable interest in the field of science and technology because of their compelling technological promises in fields of optical communication,computing,switching and signal processing.As a result of the synthesis of novel organic compounds with varying degree of nonlinear optical strength, many practical devices based on these are getting realised giving new theoretical insights into the nonolinear optical behaviour of materials.Organic compounds like phthalocyanines and porphyrins have evoked great deal of interest in the field of photonic technology.The present thesis describes the results obtained from the investigations carried out on the nonlinear optical properties of certain organo-metallic compounds using Z-Scan and DFWM techniques.
Resumo:
The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.
Resumo:
Laser produced plasma from silver is generated using a Q-switched Nd:YAG laser. Optical emission spectroscopy is used to carry out time of flight (TOF) analysis of atomic particles. An anomalous double peak profile in the TOF distribution is observed at low pressure. A collection of slower species emerge at reduced pressure below 4 X lO-3 mbar and this species has a greater velocity spread. At high pressure the plasma expansion follows the shockwave model with cylindrical symmetry whereas at reduced pressure it shows unsteady adiabatic expansion (UAE). During UAE the species show a parabolic increases in the expansion time with radial distance whereas during shock wave expansion the exponent is less than one. The angular distribution of the ablated species in the plume is obtained from the measurement of optical density of thin films deposited on to glass substrates kept perpendicular to the plume. There is a sharp variation in the film thickness away from the film centre due to asymmetries in the plume.
Resumo:
A novel fibre optic sensor for the in situ measurement of the rate of deposition of thin films has been developed. Evanescent wave in the uncladded portion of a multimode fibre is utilised for this sensor development. In the present paper we demonstrate how this sensor is useful for the monitoring of the deposition rate of polypyrrole thin films, deposited by an AC plasma polymerisation method. This technique is simple, accurate and highly sensitive compared with existing techniques.
Resumo:
Optical absorption and emission spectral studies of various phthalocyanine (Pc) molecules in PVA matrix have been reported for the first time. The recorded spectra are analyzed to get the important spectral parameters, such as optical absorption cross-section (σa), emission cross-section (σe), oscillator strength (f), fluorescence bandwidth (Δλ), emission wavelength (λ), radiative decay time (τ) and optical gain (G). Analysis shows that the emission cross-section and optical gain are maximum in the NdHPc2-doped PVA matrix. However, a comparison of the calculated emission parameters with that of borate glass matrix show that they are many times smaller in the present matrix.
Resumo:
Optical absorption studies of free base and rare earth incorporated phthalocyanine doped borate glass matrix are reported for the first lime. The absorption spectra recorded in the UV- VIS region show two well defined absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q band. The Q band always shows its characteristic splitting in all the doped glass matrices and the intensities of these components are found to vary from one Pc to another. Some of the important optical parameters, namely optical absorption coefficient (a), molar extinction coefficient (ε), absorption cross section (σa), oscillator strength (f), electric dipole strength (q2), absorption half bandwidth (Δλ) of the principal optical transitions have also been evaluated. Moreover, the spectral dependence of refractive index (n) and thereby the optical dielectric constant (ε) on wavelength yielded values of carrier concentration to effective mass ratio (N/m*) of the phthalocyanine molecule in the present glassy systems. Optical band gap (Eg) and width of the band tail (Et) are computed and their variations among the prepared samples are also discussed.
Resumo:
Optical limiting and thermal lensing studies are carried out in C70–toluene solutions. The measurements are performed using 9-ns pulses generated from a frequencydoubled Nd:YAG laser at 532 nm. Optical limiting studies in fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting. Analysis of thermal lensing measurements showed a quadratic dependence of thermal lens signal on incident laser energy, which also supports the view that optical limiting in C70 arises due to sequential two-photon absorption via excited triplet state (reverse saturable absorption).
Resumo:
We propose and demonstrate the possibility of using a permanently microbent bare optical fiber for detecting chemical species. Two detection schemes, viz., a bright-field detection scheme (for the core modes), and a dark-field detection scheme (for the cladding modes) have been employed to produce a fiber-optic sensor. The sensor described here is sensitive enough to detect concentrations as low as nanomoles per liter of a chemical species, with a dynamic range of more than 6 orders of magnitude.
Resumo:
A sensitive method based on the principle of photothermal phenomena to realize optical logic gates is presented. A dual beam thermal lens method using low power cw lasers in a dye-doped polymer can be very effectively used as an alternate technique to perform the logical function such as NAND, AND and OR.