966 resultados para Numerical power performance
Resumo:
An electrochemical double layer capacitor test cell containing activated carbon xerogel electrodes and ionic liquid electrolyte was tested at 15, 25 and 40 OC to examine the effect of temperature on electrolyte resistance (RS) and equivalent series resistance (ESR) measured using impedance spectroscopy and capacitance using charge/discharge cycling. A commercial 10F capacitor was used as a comparison. Viscosity, ionic self-diffusion coefficients and differential scanning calorimetry measurements were used to provide an insight into the behaviour of the 1,2-dimethyl-3-propylimdazolium electrolyte. Both RS and ESR decreased with increasing temperature for both capacitors. Increasing the temperature also increased the capacitance for both the test cell and the commercial capacitor but proportionally more for the test cell. An increase in temperature decreased the ionic liquid electrolyte viscosity and increased the self diffusion coefficients of both the anion and the cation indicating an increase in dissociation and increase in ionic mobility.
Resumo:
We discuss a very effective numerical method for simulating fibre-bundle models with equal load-sharing and with local load-sharing. Particular attention is paid to the case of the local load-sharing model, in which the critical load x(c) is defined as the average load per fibre that causes the final complete failure. It is shown that x(c) --> 0 when the size of the system N --> infinity. We also show analytically that the power law of the burst size distribution, D(Delta) alpha Delta(-xi), is approximately correct. The exponent xi in the local load-sharing case is not universal, since it depends on the strength distribution as well on as the size of the system.
Resumo:
The electrical and communication performance of a 0.8-mu W UHF temperature telemeter designed for human vaginal placement is discussed; a solenoidal loop antenna was used, occupying a volume of 0.1 cm(3). In situ, measured power absorption was between 19-25 dB, resulting in an effective operating range of 10 m. Capacitive loading lowered the antenna's resonant frequency by 1.4% and there was a significant polarization change in the radiated output.
A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part 1
Resumo:
The unsteady gas dynamic phenomena in engine intake systems of the type found in racecars have been examined. In particular, the resonant tuning effects, including cylinder-to-cylinder power variations, which can occur as a result of the interaction between an engine and its airbox have been considered. Frequency analysis of the output from a Virtual 4-Stroke 1D engine simulation was used to characterise the forcing function applied by an engine to an airbox. A separate computational frequency sweeping technique, which employed the CFD package FLUENT, was used to determine the natural frequencies of virtual airboxes in isolation from an engine. Using this technique, an airbox with a natural frequency at 75 Hz was designed for a Yamaha R6 4-cylinder motorcycle engine. The existence of an airbox natural frequency at 75 Hz was subsequently confirmed by an experimental frequency sweeping technique carried out on the engine test bed. A coupled 1D/3D analysis which employed the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the combined engine and airbox system. The coupled 1D/3D analysis predicted a 75 Hz resonance of the airbox at an engine speed of 9000 rpm. This frequency was the induction frequency for a single cylinder. An airbox was fabricated and tested on the engine. Static pressure was recorded at a grid of points in the airbox as the engine was swept through a speed range of 3000 to 10000 rpm. The measured engine speed corresponding to resonance in the airbox agreed well with the predicted values. There was also good correlation between the amplitude and phase of the pressure traces recorded within the airbox and the 1D/3D predictions.
Resumo:
Plasma mirrors are devices capable of switching very high laser powers on subpicosecond time scales with a dynamic range of 20–30 dB. A detailed study of their performance in the near-field of the laser beam is presented, a setup relevant to improving the pulse contrast of modern ultrahigh power lasers ~TW–PW!. The conditions under which high reflectivity can be achieved and focusability of the reflected beam retained are identified. At higher intensities a region of high specular reflectivity with rapidly decreasing focusability was observed, suggesting that specular reflectivity alone is not an adequate guide to the ideal range of plasma mirror operation. It was found that to achieve high reflectivity with negligible phasefront distortion of the reflected beam the inequality csDt,lLaser must be met (cs : sound speed, Dt: time from plasma formation to the peak of the pulse!. The achievable contrast enhancement is given by the ratio of plasma mirror reflectivity to cold reflectivity.
Resumo:
Embedded processors are used in numerous devices executing dedicated applications. This setting makes it worthwhile to optimize the processor to the application it executes, in order to increase its power-efficiency. This paper proposes to enhance direct mapped data caches with automatically tuned randomized set index functions to achieve that goal. We show how randomization functions can be automatically generated and compare them to traditional set-associative caches in terms of performance and energy consumption. A 16 kB randomized direct mapped cache consumes 22% less energy than a 2-way set-associative cache, while it is less than 3% slower. When the randomization function is made configurable (i.e., it can be adapted to the program), the additional reduction of conflicts outweighs the added complexity of the hardware, provided there is a sufficient amount of conflict misses.
Resumo:
The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed — loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.
Resumo:
We report on the migration of a traditional, single architecture application to a grid application using heterogeneous resources. We focus on the use of the UK e-Science Level 2 grid (UKL2G) which provides a heterogeneous collection of resources distributed within the UK. We discuss the solution architecture, the performance of our application, its future development as a grid-based application and comment on the lessons we have learned in using a grid infrastructure for large-scale numerical problems.
Resumo:
With the increased availability of new technologies, geography educators are revisiting their pedagogical approaches to teaching and calling for opportunities to share local and international practices which will enhance the learning experience and improve students’ performance. This paper reports on the use of handheld mobile devices, fitted with GPS, by secondary (high) school pupils in geography. Two location-aware activities were completed over one academic year (one per semester) and pre-test and post-test scores for both topics revealed a statistically significant increase in pupils’ performance as measured by the standard national assessments. A learner centred educational approach was adopted with the first mobile learning activity being created by the teacher as an exemplar of effective mobile learning design. Pupils built on their experiences of using mobile learning when they were required to created their own location aware learning task for peer use. An analysis of the qualitative data from the pupils’ journals, group diaries and focus group interviews revealed the five pillars of learner centred education are addressed when using location aware technologies and the use of handheld mobile devices offered greater flexibility and autonomy to the pupils thus altering the level of power and control away from the teacher. Due to the relatively small number of participants in the study, the results are more informative than generalisable however in light of the growing interest in geo-spatial technologies in geography education, this paper offers encouragement and insight into the use of location aware technology in a compulsory school context
Resumo:
Recognizing the importance of understanding the way in which supervisors in child welfare perceive their administrative responsibilities and use of power and authority, an exploratory study was conducted. Supervisors in child welfare agencies in urban and rural settings participated in focus groups and discussed the impact of macro and micro factors on their performance. Policy changes, including using new approaches to child welfare, and organizational culture had a major affect on the way they offered supervision. At the micro level, their use of power was related to elements in their relationships with frontline workers and their own professional development. Implications for child welfare practice and for new and experienced supervisors are presented.
Resumo:
The effects of module shape, module design, three dimensional flow field generated by modules, and partition of primary nozzle on the performance of an infinite array linear clustered plug nozzle are discussed. The module shape is a critical element for nozzle performance and the partition of the primary nozzle with round-to square modules causes a vacuum thrust reduction with respect to two-dimensional model. The performance analysis of different module configuration allows weighing separately the role of clustering and the role of module design. In operating conditions characterized by turned off modules the performance loss is larger, but the difference due to the module shape are smaller and mostly due to the module contribution. The performance of the plug nozzle can be improved by module design, which reduces the module exit flow nonuniformity.
Resumo:
A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.
Resumo:
We propose a low-complexity closed-loop spatial multiplexing method with limited feedback over multi-input-multi-output (MIMO) fading channels. The transmit adaptation is simply performed by selecting transmit antennas (or substreams) by comparing their signal-to-noise ratios to a given threshold with a fixed nonadaptive constellation and fixed transmit power per substream. We analyze the performance of the proposed system by deriving closed-form expressions for spectral efficiency, average transmit power, and bit error rate (BER). Depending on practical system design constraints, the threshold is chosen to maximize the spectral efficiency (or minimize the average BER) subject to average transmit power and average BER (or spectral efficiency) constraints, respectively. We present numerical and Monte Carlo simulation results that validate our analysis. Compared to open-loop spatial multiplexing and other approaches that select the best antenna subset in spatial multiplexing, the numerical results illustrate that the proposed technique obtains significant power gains for the same BER and spectral efficiency. We also provide numerical results that show improvement over rate-adaptive orthogonal space-time block coding, which requires highly complex constellation adaptation. We analyze the impact of feedback delay using analytical and Monte Carlo approaches. The proposed approach is arguably the simplest possible adaptive spatial multiplexing system from an implementation point of view. However, our approach and analysis can be extended to other systems using multiple constellations and power levels.