994 resultados para North Atlantic Oscillation
Resumo:
The occurrence of mesoscale eddies that develop suboxic environments at shallow depth (about 40-100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, with the use of moorings, under water gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). During the survey the eddy core showed oxygen concentrations as low as 5 µmol kg-1 with a pH of around 7.6 at approximately 100 m depth. Correspondingly, the aragonite saturation level dropped to 1 at the same depth, thereby creating unfavorable conditions for calcifying organisms. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate organic matter and dissolved organic matter (POM and DOM), generally showed elevated concentrations in the surface mixed layer (0-70 m), with DOM also accumulating beneath the oxygen minimum. With the use of reference data from the upwelling region where these eddies are formed, the oxygen utilization rate was calculated by determining oxygen consumption through the remineralization of organic matter. Inside the core, we found these rates were almost 1 order of magnitude higher (apparent oxygen utilization rate (aOUR); 0.26 µmol kg-1 day-1) than typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC), were around 0.19 to 0.23 g C m-2 day-1 at 100 m depth, clearly exceeding fluxes typical for an oligotrophic open-ocean setting. The observations support the view that the oxygen-depleted eddies can be viewed as isolated, westwards propagating upwelling systems of their own, thereby represent re-occurring alien biogeochemical environments in the ETNA.
Resumo:
The position of the North Atlantic Current (NAC) during the intensification of Northern Hemisphere glaciation (iNHG) has been evaluated using dinoflagellate cyst assemblages and foraminiferal geochemistry from a ~260 kyr interval straddling the base of the Quaternary System from two sites: eastern North Atlantic Deep Sea Drilling Project Site 610 in the path of the present NAC and central North Atlantic Integrated Ocean Drilling Program Site U1313 in the subtropical gyre. Stable isotope and foraminiferal Mg/Ca analyses confirm cooling near the marine isotope stage (MIS) G7-G6 transition (2.74 Ma). However, a continued dominance of the dinoflagellate cyst Operculodinium centrocarpum sensu Wall and Dale (1966) indicates an active NAC in the eastern North Atlantic for a further 140 kyr. At MIS 104 (~2.60 Ma), a profound dinoflagellate cyst assemblage turnover indicates NAC shutdown in the eastern North Atlantic, implying elevated atmospheric pressure over the Arctic and a resulting shift in the westerlies that would have driven the NAC. These findings challenge recent suggestions that there was no significant southward shift of the NAC or the Arctic Front during iNHG, and reveal a fundamental climatic reorganization near the base of the Quaternary.
Resumo:
Evidence from North Atlantic deep sea cores reveals that abrupt shifts punctuated what is conventionally thought to have been a relatively stable Holocene climate. During each of these episodes, cool, ice-bearing waters from north of Iceland were advected as far south as the latitude of Britain. At about the same times, the atmospheric circulation above Greenland changed abruptly. Pacings of the Holocene events and of abrupt climate shifts during the last glaciation are statistically the same; together, they make up a series of climate shifts with a cyclicity close to 1470 +/- 500 years. The Holocene events, therefore, appear to be the most recent manifestation of a pervasive millennial-scale climate cycle operating independently of the glacial-interglacial climate state. Amplification of the cycle during the last glaciation may have been linked to the North Atlantic's thermohaline circulation.
Resumo:
Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg**-1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m**-2 d**-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ~15 and 13.3 mg m**-2 d**-1, respectively, were observed in February-March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The d15N record showed a decrease from 5.21 to 3.11 per mil from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from -52 to 21.4 mg m**-2 d**-1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.
Resumo:
Oceanic crustal drilling by R. V. Glomar Challenger at 15 sites in the North Atlantic has led to a complex picture of the upper half kilometer of the crust. Elements of the picture include the absence of the source for linear magnetic anomalies, marked episodicity of volcanic activity, ubiquitous low temperature alteration and evidence for large scale tectonic disturbance. Comparison sections in the Pacific and much deeper crustal drilling are needed to attack problems arising from the North Atlantic results.
Resumo:
[EN] Two new 40Ar/39Ar ages (*) and previously published K/Ar ages of basaltic pillow lava flows are coeval with closely-related fossiliferous marine layers, allowing us to establish the beginning (5.8; 5.0; 4.8Ma at Ajuí, Fuerteventura Island and 4.8±0.03Ma (2?)* at Tamaraceite) and a middle stage (4.20±0.18Ma (2?)* at La Esfinge in Gran Canaria Island) of Early Pliocene marine deposits in the Canary Islands. Here the presence of tropicopolitan fossils (Megaselachus megalodon, Janthina typica) suggests the influence of a possible Central American Circumtropical Current during the Pliocene and in the North Atlantic basin.
Resumo:
[EN] Complex population structure has been described for the loggerhead sea turtle (Caretta caretta), revealing lower levels of population genetic structure in nuclear compared to mitochondrial DNA assays. This may result from mating during spatially overlapping breeding migrations, or male-biased dispersal as previously found for the green turtle (Chelonia mydas). To further investigate these multiple possibilities, we carried out a comparative analysis from twelve newly developed microsatellite loci and the mitochondrial DNA control region (~804 bp) in adult females of the Cape Verde Islands (n=158), and Georgia, USA (n=17).
Resumo:
During the late Quaternary, both external and internal forcings have driven major climatic shifts from glacial to interglacial conditions. Nonlinear climatic steps characterized the transitions leading to these extrema, with intermediate excursions particularly well expressed in the dynamics of the Northern Hemisphere cryosphere. Here we document the impact of these dynamics on the north-eastern North Atlantic Ocean, focussing on the 35-10 ka interval. Sea-surface salinities have been reconstructed quantitatively based on two independent methods from core MD95-2002, recovered from the northern Bay of Biscay adjacent to the axis of the Manche paleoriver outlet and thus in connection with proximal European ice sheets and glaciers. Quantitative reconstructions deriving from dinocyst and planktonic foraminiferal analyses have been combined within a robust chronology to assess the amplitude and timing of hydrological changes in this region. Our study evidences strong pulsed freshwater discharges which may have impacted the North Atlantic Meridional Overturning Circulation.
Resumo:
Microplankton plays a vital part in marine ecosystems and its importance has been recognised by the inclusion of microplankton community composition in regulatory frameworks such as the European Water Framework Directive and the Marine Strategy Framework Directive as an indicator of ecological status. Quantitative techniques are therefore required to assess the environmental status of the microplankton in a water body. Here we demonstrate the use of a method known as the Microplankton Index PI(mp) to evaluate changes in the microplankton community of the West coast Scottish Sea Loch Creran. Microplankton in this fjord has been studied since the 1970’s providing a data set spanning four decades. Our analysis compares an arbitrarily chosen reference period between 1979 and 1981 with a period between 2011 and 2013 and demonstrates that between these two periods community structure has changed considerably with a substantial drop in the numbers of observed diatoms accompanied by a rise in the number of autotrophic/mixotrophic dinoflagellates as well as an increase in the potentially toxin producing genus Pseudo-nitzschia and that these are related to changes in both the intensity and timing of local patterns of precipitation. The PI(mp) is shown to be a useful and robust method to visualise and quantify changes in the underlying structure of the microplankton community and is a powerful addition to the toolbox of techniques needed to determine the health of our seas.
Resumo:
The subpolar North Atlantic (SPNA) is important in the global carbon cycle because of the deep water ventilation processes that lead to both high uptake of atmospheric CO2 and large inventories of anthropogenic CO2 (C-ant). Thus, it is crucial to understand its response to increasing anthropogenic pressures. In this work, the budgets of dissolved inorganic carbon (DIC), C-ant and natural DIC (DICnat) in the eastern SPNA in the 2000s, are jointly analyzed using in situ data. The DICnat budget is found to be in steady state, confirming a long-standing hypothesis from in situ data for the first time. The biological activity is driving the uptake of natural CO2 from the atmosphere. The C-ant increase in the ocean is solely responsible of the DIC storage rate which is explained by advection of C-ant from the subtropics (65%) and C-ant air-sea flux (35%). These results demonstrate that the C-ant is accumulating in the SPNA without affecting the natural carbon cycle.
Resumo:
In the north Atlantic subtropical gyre, the oceanic vertical structure of density is characterized by a region of rapid increase with depth. This layer is called the permanent pycnocline. The permanent pycnocline is found below a surface mode water ,which are ventilated every winter when penetrated locally by the mixed layer. Assessing the structure and variability of the permanent pycnocline is of a major interest in the understanding of the climate system because the pycnocline layer delimits important heat and anthropogenic reservoir. Moreover, the heat content structure translate into changes in the large scale stratification feature, such as the permanent pycnocline. We developed a new objective algorithm for the characterization of the large scale structure of the permanent pycnocline (OAC-P). Argo data have been used with OAC-P to provide a detailed description of the mean structure of the North-Atlantic subtropical pycnocline (e.g.: depth, thickness, temperature, salinity, density, potential vorticity). Results reveal a surprisingly complex structure with inhomogeneous properties. While the classical bowl shape of the pycnocline depth is captured, much more complex pycnocline structure emerges at the regional scale. In the southern recirculation gyre of the Gulf Stream Extension, the pycnocline is deep, thick, the maximum of stratification is found in the middle on the layer and follow an isopycnal surface. But local processes influence and modify this textbook description and the pycnocline is characterized by a vertically asymmetric structure and gradients in thermohaline properties. T/S distribution along the permanent pycnocline depth is complex and reveals a diversity of water masses resulting from mixing of different source waters. We will present the observed mean structure of the North-Atlantic subtropical permanent pycnocline and relate it to physical processes that constraint it.