891 resultados para Non-linear multiple regression
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.
Resumo:
In this work, the dynamic behavior of self-synchronization and synchronization through mechanical interactions between the nonlinear self-excited oscillating system and two non-ideal sources are examined by numerical simulations. The physical model of the system vibrating consists of a non-linear spring of Duffing type and a nonlinear damping described by Rayleigh's term. This system is additional forced by two unbalanced identical direct current motors with limited power (non-ideal excitations). The present work mathematically implements the parametric excitation described by two periodically changing stiffness of Mathieu type that are switched on/off. Copyright © 2005 by ASME.
Resumo:
We present a simple mathematical model of a wind turbine supporting tower. Here, the wind excitation is considered to be a non-ideal power source. In such a consideration, there is interaction between the energy supply and the motion of the supporting structure. If power is not enough, the rotation of the generator may get stuck at a resonance frequency of the structure. This is a manifestation of the so-called Sommerfeld Effect. In this model, at first, only two degrees of freedom are considered, the horizontal motion of the upper tip of the tower, in the transverse direction to the wind, and the generator rotation. Next, we add another degree of freedom, the motion of a free rolling mass inside a chamber. Its impact with the walls of the chamber provides control of both the amplitude of the tower vibration and the width of the band of frequencies in which the Sommerfeld effect occur. Some numerical simulations are performed using the equations of motion of the models obtained via a Lagrangian approach.
Resumo:
The edges detection model by a non-linear anisotropic diffusion, consists in a mathematical model of smoothing based in Partial Differential Equation (PDE), alternative to the conventional low-pass filters. The smoothing model consists in a selective process, where homogeneous areas of the image are smoothed intensely in agreement with the temporal evolution applied to the model. The level of smoothing is related with the amount of undesired information contained in the image, i.e., the model is directly related with the optimal level of smoothing, eliminating the undesired information and keeping selectively the interest features for Cartography area. The model is primordial for cartographic applications, its function is to realize the image preprocessing without losing edges and other important details on the image, mainly airports tracks and paved roads. Experiments carried out with digital images showed that the methodology allows to obtain the features, e.g. airports tracks, with efficiency.
Resumo:
Background: Impairment in non-motor functions such as disturbances of some executive functions are also common events in Parkinson's disease patients. Objective: To verify the performance of Parkinson's disease patients in activities requiring visuoconstructive and visuospatial skills. Method: Thirty elderly patients with mild or moderate stages of Parkinson's disease were studied. The assessment of the clinical condition was based on the unified Parkinson's disease rating scale (56.28; SD=33.48), Hoehn and Yahr (2.2; SD=0.83), Schwab and England (78.93%), clock drawing test (7.36; SD=2.51), and mini-mental state examination (26.48; SD=10.11). Pearson's correlation and stepwise multiple regression were used for statistical analyses. Results: The patients presented deterioration in visuospatial and visuoconstructive skills. Conclusion: The clock drawing test proved to be a useful predictive tool for identifying early cognitive impairment in these individuals.
Resumo:
We discuss dynamics of a vibro-impact system consisting of a cart with an piecewise-linear restoring force, which vibrates under driving by a source with limited power supply. From the point of view of dynamical systems, vibro-impact systems exhibit a rich variety of phenomena, particularly chaotic motion. In our analyzes, we use bifurcation diagrams, basins of attractions, identifying several non-linear phenomena, such as chaotic regimes, crises, intermittent mechanisms, and coexistence of attractors with complex basins of attraction. © 2009 by ASME.
Resumo:
This paper presents some methodologies for reactive energy measurement, considering three modern power theories that are suitable for three-phase four-wire non-sinusoidal and unbalanced circuits. The theories were applied in some profiles collected in electrical distribution systems which have real characteristics for voltages and currents measured by commercial reactive energy meters. The experimental results are presented in order to analyze the accuracy of the methodologies, considering the standard IEEE 1459-2010 as a reference. Finally, for additional comparisons, the theories will be confronted with the modern Yokogawa WT3000 energy meter and three samples of a commercial energy meter through an experimental setup. © 2011 IEEE.
Resumo:
With the objective to quantify the okra crop's growth and macro and micronutrients accumulation during its life-cycle obtaining equations that best represent it, an experiment was carried out at Jaboticabal city, SP, Brazil, from January 14th to May 14th, 2009. The cv. Santa Cruz 47 was directly sowed into open soil furrows, in a spacing of 1 x 0,2 m. During the life-cycle were realized random samples of plants at 15 days intervals. The means were adjusted to polynomial regression equations set of non-linear parameters. After 50 days from sowing there has been a large increase of dry matter in plant' parts. At the final harvest, 120 days after sowing, the leaves, stems and fruits accounted for 21, 71 and 8%, respectively, from the total plant dry matter. The decreasing sequence of nutrient accumulation was K, Ca, N, Mg, P, Fe, B, Mn, Zn and Cu equivalent to 6,002.8; 4,733.8; 2,930.8; 1,196.3; 473.7; 436.2; 49.8; 10.4; 7.1; 7.1 e 1.5 mg plant-1. The quantity accumulated of culture were 146.5; 23.7; 300.1; 236.7; 59.8 e 21.8 kg ha-1 of N, P, K, Ca, Mg and S, respectively, and 520.0; 76.0; 2,491.0; 355.0 e 355.0 de B, Cu, Fe, Mn and Zn, respectively.
Resumo:
This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
This paper presents a numerical approach to model the complex failure mechanisms that define the ultimate rotational capacity of reinforced concrete beams. The behavior in tension and compression is described by a constitutive damage model derived from a combination of two specific damage models [1]. The nonlinear behavior of the compressed region is treated by the compressive damage model based on the Drucker-Prager criterion written in terms of the effective stresses. The tensile damage model employs a failure criterion based on the strain energy associated with the positive part the effective stress tensor. This model is used to describe the behavior of very thin bands of strain localization, which are embedded in finite elements to represent multiple cracks that occur in the tensioned region [2]. The softening law establishes dissipation energy compatible with the fracture energy of the concrete. The reinforcing steel bars are modeled by truss elements with elastic-perfect plastic behavior. It is shown that the resulting approach is able to predict the different stages of the collapse mechanism of beams with distinct sizes and reinforcement ratios. The tensile damage model and the finite element embedded crack approach are able to describe the stiffness reduction due to concrete cracking in the tensile zone. The truss elements are able to reproduce the effects of steel yielding and, finally, the compressive damage model is able to describe the non-linear behavior of the compressive zone until the complete collapse of the beam due to crushing of concrete. The proposed approach is able to predict well the plastic rotation capacity of tested beams [3], including size-scale effects.
Resumo:
The invasive behavior of melaleuca (Melaleuca quinquenervia) plants in wetlands is due to its aggressive regeneration strategy, which is based on its seeds germination performance. Understanding of the eco-physiological aspects of the seed germination in melaleuca plants may significantly contribute for the development of management strategies. The objective of this research was to learn how the germination of M. quinquenervia seeds are affected by light and temperature. Melaleuca seeds were placed on filter paper moistened with 12 ml of distilled water at temperatures between 10 and 45°C. Germination was evaluated in dark and light conditions. Seed germination, first count of seed germination (seven days), germination speed index and germination mean time were determined up to 40 days after seeding, when germination had ceased in most of the treatments. After that period, the seeds were transferred to conditions of 30°C and light, which was found to be ideal in the previous phase. Seed germination was daily evaluated up to 63 days when it was again observed no longer to occur. The treatment repetitions were distributed in the growth-chamber according to a completely randomized design in a factorial scheme (eight temperatures x two light conditions) and four repetitions. The data were submitted to analysis of variance with the F test and the means were adjusted to polynomial and non linear regression models. The highest seed germination performance was observed to take place under conditions of 27.3°C with light. The temperatures of 35 and 40°C in the dark induced thermal inhibition of seed germination. The temperature of 45°C was lethal to the seeds.
Resumo:
In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
The Poincaré plot for heart rate variability analysis is a technique considered geometrical and non-linear, that can be used to assess the dynamics of heart rate variability by a representation of the values of each pair of R-R intervals into a simplified phase space that describes the system's evolution. The aim of the present study was to verify if there is some correlation between SD1, SD2 and SD1/SD2 ratio and heart rate variability nonlinear indexes either in disease or healthy conditions. 114 patients with arterial coronary disease and 65 healthy subjects underwent 30. minute heart rate registration, in supine position and the analyzed indexes were as follows: SD1, SD2, SD1/SD2, Sample Entropy, Lyapunov Exponent, Hurst Exponent, Correlation Dimension, Detrended Fluctuation Analysis, SDNN, RMSSD, LF, HF and LF/HF ratio. Correlation coefficients between SD1, SD2 and SD1/SD2 indexes and the other variables were tested by the Spearman rank correlation test and a regression analysis. We verified high correlation between SD1/SD2 index and HE and DFA (α1) in both groups, suggesting that this ratio can be used as a surrogate variable. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)