958 resultados para Nicotinic receptor expression during differentiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Mouse models of cystic fibrosis (CF) fail to truly represent the respiratory pathology. We have consequently developed human airways cell culture models to address this. The impact of cigarette smoke within the CF population is well documented, with exposure being known to worsen lung function. As nicotine is often perceived to be a less harmful component of tobacco smoke, this research aimed to identify its effects upon viability and inflammatory responses of CF (IB3-1) and CF phenotype corrected (C38) bronchial epithelial cells. Methods: IB3-1 and C38 cell lines were exposed to increasing concentrations of nicotine (0.55-75μM) for 24 hours. Cell viability was assessed via Cell Titre Blue and the inflammatory response with IL-6 and IL-8 ELISA. Results: CF cells were more sensitive; nicotine significantly (P<0.05) reduced cell viability at all concentrations tested, but failed to have a marked effect on C38 viability. Whilst nicotine induced anti-inflammatory effects in CF cells with a significant reduction in IL-6 and IL-8 release, it had no effect on chemokine release by C38 cells. Conclusion: CF cells may be more vulnerable to inhaled toxicants than non-CF cells. As mice lack a number of human nicotinic receptor subunits and fail to mimic the characteristic pathology of CF, these data emphasise the importance of employing relevant human cell lines to study a human-specific disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms and signalling cascades that trigger the induction of group I metabotropic glutamate receptor (GI-mGluR)-dependent long-term depression (LTD) have been the subject of intensive investigation for nearly two decades. The generation of genetically modified animals has played a crucial role in elucidating the involvement of key molecules regulating the induction and maintenance of mGluR-LTD. In this review we will discuss the requirement of the newly discovered MAPKAPK-2 (MK2) and MAPKAPK-3 (MK3) signalling cascade in regulating GI-mGluR-LTD. Recently, it has been shown that the absence of MK2 impaired the induction of GI-mGluR-dependent LTD, an effect that is caused by reduced internalization of AMPA receptors (AMPAR). As the MK2 cascade directly regulates tumour necrosis factor alpha (TNFα) production, this review will examine the evidence that the release of TNFα acts to regulate glutamate receptor expression and therefore may play a functional role in the impairment of GI-mGluRdependent LTD and the cognitive deficits observed in MK2/3 double knockout animals. The strong links of increased TNFα production in both aging and neurodegenerative disease could implicate the action of MK2 in these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme replacement therapy (ERT) with recombinant human (rh) acid α-glucosidase (GAA) has prolonged the survival of patients. However, the paucity of cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle, where it is needed to take up rhGAA, correlated with a poor response to ERT by muscle in Pompe disease. Clenbuterol, a selective β2 receptor agonist, enhanced the CI-MPR expression in striated muscle through Igf-1 mediated muscle hypertrophy, which correlated with increased CI-MPR (also the Igf-2 receptor) expression. In this study we have evaluated 4 new drugs in GAA knockout (KO) mice in combination with an adeno-associated virus (AAV) vector encoding human GAA, 3 alternative β2 agonists and dehydroepiandrosterone (DHEA). Mice were injected with AAV2/9-CBhGAA (1E+11 vector particles) at a dose that was not effective at clearing glycogen storage from the heart. Heart GAA activity was significantly increased by either salmeterol (p<0.01) or DHEA (p<0.05), in comparison with untreated mice. Furthermore, glycogen content was reduced in the heart by treatment with DHEA (p<0.001), salmeterol (p<0.05), formoterol (p<0.01), or clenbuterol (p<0.01) in combination with the AAV vector, in comparison with untreated GAA-KO mice. Wirehang testing revealed that salmeterol and the AAV vector significantly increased performance, in comparison with the AAV vector alone (p<0.001). Similarly, salmeterol with the vector increased performance significantly more than any of the other drugs. The most effective individual drugs had no significant effect in absence of vector, in comparison with untreated mice. Thus, salmeterol should be further developed as adjunctive therapy in combination with either ERT or gene therapy for Pompe disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MazEF toxin-antitoxin (TA) system consists of the antitoxin MazE and the toxin MazF. MazF is a sequence-specific endoribonuclease that upon activation causes cellular growth arrest and increass the level of persisters. Moreover, MazF-induced cells are in a quasi-dormant state that cells remain metabolically active while stop dividing. The quasi-dormancy is similar to the nonreplicating state of M. tuberculosis during latent tuberculosis, thus suggesting the role of mazEF in M. tuberculosis dormancy and persistence. M. tuberculosis has nine mazEF TA modules, each with different RNA cleavage specificities and implicated in selective gene expression during stress conditions. To date only the Bacillus subtilis MazF-RNA complex structure has been determined. As M. tuberculosis MazF homologues recognize distinct RNA sequences, their molecular mechanisms of substrate specificity remain unclear. By taking advantage of X-ray crystallography, we have determined structures of two M. tuberculosis MazF-RNA complexes, MazF-mt1 (Rv2801c) and MazF-mt3 (Rv1991c) in complex with an uncleavable RNA substrate. These structures have provided the molecular basis of sequence-specific RNA recognition and cleavage by MazF toxins.

Both MazF-mt1-RNA and MazF-mt3-RNA complexes showed similar structural organization with one molecule of RNA bound to a MazF-mt1 or MazF-mt3 dimer and occupying the same pocket within the MazF dimer interface. Similar to B. subtilis MazF-RNA complex, MazF-mt1 and MazF-mt3 displayed a conserved active site architecture, where two highly conserved residues, Arg and Thr, form hydrogen bonds with the scissile phosphate group in the cleavage site of the bound RNA. The MazF-mt1-RNA complex also showed specific interactions with its three-base RNA recognition element. Compared with the B. subtilis MazF-RNA complex, our structures showed that residues involved in sequence-specific recognition of target RNA vary between the MazF homologues, therefore explaining the molecular basis for their different RNA recognition sequences. In addition, local conformational changes of the loops in the RNA binding site of MazF-mt1 appear to play a role in MazF targeting different RNA lengths and sequences. In contrast, the MazF-mt3-RNA complex is in a non-optimal RNA binding state with a symmetry-related MazF-mt3 molecule found to make interactions with the bound RNA in the crystal. The crystal-packing interactions were further examined by isothermal titration calorimetry (ITC) studies on selected MazF-mt3 mutants. Our attempts to utilize a MazF-mt3 mutant bearing mutations involved in crystal contacts all crystallized with few nucleotides, which are still found to interact with a symmetry mate. However, these different crystal forms revealed the conformational flexibility of loops in the RNA binding interface of MazF-mt3, suggesting their role in RNA binding and recognition, which will require further studies on additional MazF-mt3-RNA complex interactions.

In conclusion, the structures of the MazF-mt1-RNA and MazF-mt3-RNA complexes provide the first structural information on any M. tuberculosis MazF homologues. Supplemented with structure-guided mutational studies on MazF toxicity in vivo, this study has addressed the structural basis of different RNA cleavage specificities among MazF homologues. Our work will guide future studies on the function of other M. tuberculosis MazF and MazE-MazF homologues, and will help delineate their physiological roles in M. tuberculosis stress responses and pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen minimum zone (OMZ) of the late Quaternary California margin experienced abrupt and dramatic changes in strength and depth in response to changes in intermediate water ventilation, ocean productivity, and climate at orbital through millennial time scales. Expansion and contraction of the OMZ is exhibited at high temporal resolution (107-126 year) by quantitative benthic foraminiferal assemblage changes in two piston cores forming a vertical profile in Santa Barbara Basin (569 m, basin floor; 481 m, near sill depth) to 34 and 24 ka, respectively. Variation in the OMZ is quantified by new benthic foraminiferal groupings and new dissolved oxygen index based on documented relations between species and water-mass oxygen concentrations. Foraminiferal-based paleoenvironmental assessments are integrated with principal component analysis, bioturbation, grain size, CaCO3, total organic carbon, and d13C to reconstruct basin oxygenation history. Fauna responded similarly between the two sites, although with somewhat different magnitude and taxonomic expression. During cool episodes (Younger Dryas and stadials), the water column was well oxygenated, most strongly near the end of the glacial episode (17-16 ka; Heinrich 1). In contrast, the OMZ was strong during warm episodes (Bølling/Allerød, interstadials, and Pre-Boreal). During the Bølling/Allerød, the OMZ shoaled to <360 m of contemporaneous sea level, its greatest vertical expansion of the last glacial cycle. Assemblages were then dominated by Bolivina tumida, reflecting high concentrations of dissolved methane in bottom waters. Short decadal intervals were so severely oxygen-depleted that no benthic foraminifera were present. The middle to late Holocene (6-0 ka) was less dysoxic than the early Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B-type natriuretic peptide (BNP) is a prognostic and diagnostic marker for heart failure (HF). An anti-inflammatory, cardio-protective role for BNP was proposed. In cardiovascular diseases including pressure overload-induced HF, perivascular inflammation and cardiac fibrosis are, in part, mediated by monocyte chemoattractant protein (MCP)1-driven monocyte migration. We aimed to determine the role of BNP in monocyte motility to MCP1. A functional BNP receptor, natriuretic peptide receptor-A (NPRA) was identified in human monocytes. BNP treatment inhibited MCP1-induced THP1 (monocytic leukemia cells) and primary monocyte chemotaxis (70 and 50 %, respectively). BNP did not interfere with MCP1 receptor expression or with calcium. BNP inhibited activation of the cytoskeletal protein RhoA in MCP1-stimulated THP1 (70 %). Finally, BNP failed to inhibit MCP1-directed motility of monocytes from patients with hypertension (n = 10) and HF (n = 6) suggesting attenuation of this anti-inflammatory mechanism in chronic heart disease. We provide novel evidence for a direct role of BNP/NPRA in opposing human monocyte migration and support a role for BNP as a cardio-protective hormone up-regulated as part of an adaptive compensatory response to combat excess inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Pulmonary fibrosis is a debilitating and lethal disease with no effective treatment options. Understanding the pathological processes at play will direct the application of novel therapeutic avenues. Hypoxia has been implicated in the pathogenesis of pulmonary fibrosis yet the precise mechanism by which it contributes to disease progression remains to be fully elucidated. It has been shown that chronic hypoxia can alter DNA methylation patterns in tumour-derived cell lines. This epigenetic alteration can induce changes in cellular phenotype with promoter methylation being associated with gene silencing. Of particular relevance to idiopathic pulmonary fibrosis (IPF) is the observation that Thy-1 promoter methylation is associated with a myofibroblast phenotype where loss of Thy-1 occurs alongside increased alpha smooth muscle actin (α-SMA) expression. The initial aim of this study was to determine whether hypoxia regulates DNA methylation in normal human lung fibroblasts (CCD19Lu). As it has been reported that hypoxia suppresses Thy-1 expression during lung development we also studied the effect of hypoxia on Thy-1 promoter methylation and gene expression.

METHODS: CCD19Lu were grown for up to 8 days in hypoxia and assessed for global changes in DNA methylation using flow cytometry. Real-time PCR was used to quantify expression of Thy-1, α-SMA, collagen I and III. Genomic DNA was bisulphite treated and methylation specific PCR (MSPCR) was used to examine the methylation status of the Thy-1 promoter.

RESULTS: Significant global hypermethylation was detected in hypoxic fibroblasts relative to normoxic controls and was accompanied by increased expression of myofibroblast markers. Thy-1 mRNA expression was suppressed in hypoxic cells, which was restored with the demethylating agent 5-aza-2'-deoxycytidine. MSPCR revealed that Thy-1 became methylated following fibroblast exposure to 1% O2.

CONCLUSION: These data suggest that global and gene-specific changes in DNA methylation may play an important role in fibroblast function in hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The male gametophyte of the semi-aquatic fern, Marsilea vestita, produces multiciliated spermatozoids in a rapid developmental sequence that is controlled post-transcriptionally when dry microspores are placed in water. Development can be divided into two phases, mitosis and differentiation. During the mitotic phase, a series of nine successive division cycles produce 7 sterile cells and 32 spermatids in 4.5-5 hours. During the next 5-6 hours, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ~140 cilia. This document focuses on the role of motor proteins in the regulation of male gametophyte development and during ciliogenesis. In order to study the mechanisms that regulate spermatogenesis, RNAseq was used to generate a reference transcriptome that allowed us to assess the abundance of transcripts at different stages of development. Over 120 kinesin-like sequences were identified in the transcriptome that represent 56 unique kinesin transcripts. Members of the kinesin-2, -4, -5, -7, -8, -9, -12, -13, and -14 families, in addition to several plant specific and ‘orphan’ kinesins are present. Most (91%) of these kinesin transcripts change in abundance throughout gametophyte development, with 52% of kinesin mRNAs enriched during the mitotic phase and 39% enriched during differentiation. Functional analyses show that the temporal regulation of kinesin transcripts during gametogenesis directly correlates with kinesin protein function. Specifically, Marsilea makes one kinesin-2 (MvKinesin-2) and two kinesin-9 (MvKinesin-9A and MvKinesin-9B) transcripts, which are present during spermatid differentiation and ciliogenesis. Silencing experiments showed that MvKinesin-2 and MvKinesin-9A are required for ciliogenesis and motility in the Marsilea male gametophyte; however, these kinesins display atypical roles during these processes. In contrast, spermatozoids produced after the silencing of MvKinesin-9B exhibit normal morphology. MvKinesin-2 is necessary for cytokinesis as well as for regulating ciliary length and MvKinesin-9A is needed for the correct orientation of basal bodies, events not typically associated with these proteins. In addition, Marsilea makes motile, ciliated gametophytes without the help of IFT dynein, outer arm dynein, or the BBsome. These results are the first to investigate the kinesin-linked mechanisms that regulate ciliogenesis in a land plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiamethoxam is a systemic insecticide from the neonicotinoid group, nitroguanidin family which affects the nicotinic receptor acetyl choline in the insect membrane, wounding the nervous system and causing the death of the insect. It was used with success in the control of initial pests of several crops. It was considered that thiamethoxam has a bioactivator effect, because in the absence of insects promoted increase in vigor, development and productivity of crops. This work was carried out to verify if thiamethoxam causes histological changes in sugarcane roots. In this work, it was used optical microscopy, images arrest, tissue biometrics and statistical analysis, in young roots of sugarcane RB 83 5486 after the treatments with different thiamethoxam concentrations. It was determined changes in histological structure of tissues 7, 14, 21 and 28 days after the treatments, establishing its effects on root plant anatomy. It was verified that thiamethoxam increased root cortex width, increasing the vascular cylinder and the metaxylem vessel elements number in the vascular tissue until 21 days after application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the anti-hyperprolactinemic activity of Prunella vulgaris L. extract (PVE) in vivo and in vitro. Methods: Rats were given intraperitoneal (i. p.) metoclopramide (MCP, 150 mg/kg daily) for 10 days to prepare hyperprolactinemia (hyperPRL) model. Bromocriptine was used as positive control drug. High (5.6 g/kg), medium (2.8 g/kg) and low (1.4 g/kg) doses of PVE were administered to hyperPRL rats. The effect of PVE on serum prolactin (PRL), estradiol (E2), progesterone (PGN), follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were investigated in the rats. MMQ cells derived from rat pituitary adenoma cells and GH3 cells from rat pituitary lactotropictumoral cells were used for in vitro experiments. The effect of PVE on PRL secretion were studied in MMQ cells and GH3 cells respectively. Results: Compared with the control group (446.21 ± 32.43 pg/mL), high (219.23 ± 10.62 pg/mL) and medium (245.47 ± 13.52 pg/mL) reduced PRL level of hyperPRL rats significantly (p 0.05). In MMQ cells, treatment with 5 mg/mL PVE or 10 mg/mL PVE) significantly suppressed PRL secretion and synthesis at 24h compared with controls (p < 0.01). Consistent with D2- action, PVE did not affect PRL in rat pituitary lactotropic tumor-derived GH3 cells that lack the D2 receptor expression, compared with controls. Conclusion: PVE showed anti-hyperPRL activity and can potentially be used for the treatment of hyperprolactinemi, but further studies are required to ascertain this

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinitis Pigmentosa (RP) is the name given to a group of hereditary diseases causing progressive and degenerative blindness. RP affects over 1 in 4000 individuals, making it the most prevalent inherited retinal disease worldwide, yet currently there is no cure. In 2011, our group released a paper detailing the protective effects of the synthetic progestin ‘Norgestrel’. A common component of the female oral contraceptive pill, Norgestrel was shown to protect against retinal cell death in two distinct mouse models of retinal degeneration: in the Balb/c light damage model and the Pde6brd10 (rd10) model. Little was known of the molecular workings of this compound however and thus this study aimed to elucidate the protective manner in which Norgestrel worked. To this aim, the 661W cone photoreceptor-like cell line and ex vivo retinal explanting was utilised. We found that Norgestrel induces a increase in neuroprotective basic fibroblast growth factor (bFGF) with subsequent downstream actions on the inhibition of glycogen synthase kinase 3β. Progesterone receptor expression was subsequently characterised in the C57 and rd10 retinas and in the 661W cell line. Norgestrel caused nuclear trafficking of progesterone receptor membrane complex one (PGRMC1) in 661W cells and thus Norgestrel was hypothesised to work primarily through the actions of PGRMC1. This trafficking was shown to be responsible for the critical upregulation of bFGF and PGRMC1- Norgestrel binding was proven to cause a neuroprotective bFGF-mediated increase in intracellular calcium. The protective properties of Norgestrel were further studied in the rd10 mouse model of retinitis pigmentosa. Using non-invasive diet supplementation (80mg/kg), we showed that Norgestrel gave significant retinal protection out to postnatal day 40 (P40). Overactive microglia have previously been shown to potentiate photoreceptor cell loss in the degenerating rd10 retina and thus we focussed on Norgestrel-mediated changes in photoreceptor-microglial crosstalk. Norgestrel acted to dampen pro-inflammatory microglial cell reactivity, decreasing chemokine (MCP1, MCP3, MIP-1α, MIP-1β) and subsequent damaging cytokine (TNFα, Il-1β) production. Critically, Norgestrel up-regulated photoreceptor-microglial, fractalkine-CX3CR1 signalling 1000-fold in the P20 rd10 mouse. Known to prevent microglial activation, we hypothesise that Norgestrel acts as a vital anti-inflammatory in the diseased retina, driving fractalkine-CX3CR1 signalling to delay retinal degeneration. This study stands to highlight some of the neuroprotective mechanisms utilised by Norgestrel in the prevention of photoreceptor cell death. We identify for the first time, not only a pro-survival pathway activated directly in photoreceptor cells, but also a Norgestreldriven mediation of an otherwise damaging microglial cell response. All taken, these results form the beginning of a case to bring Norgestrel to clinical trials, as a potential therapeutic for the treatment of RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce mémoire s’intéresse aux apports possibles de la biomécanique meyerholdienne à l’expression théâtrale et plastique du slam de poésie, l’objectif initial de la recherche consistant à bonifier et à développer l’expression tant gestuelle que vocale du poète performant son texte à slamer. Il s’agissait donc, à travers le processus de recherche-création proposé, de conduire une série de laboratoires et d’expérimentations théâtrales afin de développer Panpan!, un spectacle expérimental hybridant à la fois biomécanique et slam de poésie. Des multiples expériences nécessaires à la réalisation de ce court spectacle, j’ai dégagé une série d’outils théoriques et pratiques, que j’ai ensuite exposés en profondeur dans cet essai. En annexe, le lecteur trouvera également l’ensemble de mes outils de travail, développés au fil de ma pratique expérimentale et ayant permis tant la réalisation de Panpan! que la découverte et l’étude des principes théoriques et pratiques dont fait état ma recherche. Mots clés: poésie slamée, slam de poésie, biomécanique, Vsevolod E. Meyerhold, slam-théâtre, expression corporelle, expression vocale, partition dramaturgique, mécanique dramaturgique, musicalité, virtuosité, rythme, constructivisme russe, grotesque, cabotinage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los cambios epigenéticos son responsables de la aparición de muchas patologías humanas y sus causas son debido a factores ambientales como genéticos. Se ha descrito en enfermedades crónicas como la Diabetes Mellitus tipo 2 (T2DM) que se caracteriza por los estados de hiperglucemia y el incremento en el estrés oxidativo que conlleva a complicaciones micro y macro vasculares, asociado a una desmetilación global del genoma. Nuestra hipótesis corresponde a que los órganos diana son afectados por las alteraciones como la metilación e hidroximetilación como consecuencia del estrés oxidativo que luego repercuten en la persistencia de la enfermedad. Métodos: A partir de sangre periférica se analizaron los cambios globales en la metilación del DNA que son afectados por el estado metabólico de 60 individuos (40 pacientes, 20 controles sanos). Por técnicas de cuantificación se compararon los resultados obtenidos con los de la expresión de las enzimas involucradas. Por último, se realizó un estudio de microarreglos de metilación del DNA y de expresión obtenidos de la base de datos GEO para así comparar los resultados con nuestros datos experimentales. Resultados: Los pacientes diabéticos con pobre control metabólico presentaron mayores niveles de metilación que el grupo control y no se encontró alteración en las enzimas involucradas en este proceso. Los resultados fueron concordantes con el estudio de microarreglos. Conclusión: Los estudios experimentales y de microarreglos demostraron que la metilación es tejido específico y que existe una mayor oxidación en pacientes. Por ello proponemos una vía alterna de desmetilación no enzimática, basada en la oxidación directa de los grupos metilos generados por los estados oxidativos característicos de esta enfermedad.