849 resultados para Neural networks model
Resumo:
Neste trabalho é apresentado um modelo de redes neurais que será utilizado como ferramenta para uso no planejamento energético e na construção de cenários energéticos através da identificação e agrupamento de pixels representativos de classes de água, vegetação e antropização no entorno do reservatório de Tucuruí, Estado do Pará (bacia do rio Tocantins). Para o estudo, foram utilizadas fotografias aéreas ortorretificadas e um recorte da imagem do satélite Landsat, ambos obtidos em agosto de 2001 e classificados utilizando a métrica da mínima distância no software Matlab 7.3.0 (Matrix Laboratory - software de matemática aplicada) e no Arcview 3.2a (programa de Sistemas de Informações Geográficas). Para classificação da área no Matlab, foram utilizadas redes neurais competitivas, mais especificamente as redes de Kohonen que são caracterizadas por realizar um mapeamento de um espaço de dimensão n (número de entradas) para um espaço de dimensão m (número de saídas). Os resultados obtidos no classificador utilizando rede neural e no classificador do Arcview foram semelhantes, mas houve uma divergência no que diz respeito à imagem de alta e média resolução que pode ser justificada pelo fato de que a imagem de alta resolução espacial ocasiona muita variação espectral em algumas feições, gerando dificuldades nas classificações. Esse classificador automático é uma ferramenta importante para identificar oportunidades e potenciais a serem desenvolvidos na construção de cenários energéticos programados. Os resultados deste trabalho confirmam que a imagem de média resolução ainda é a mais indicada para resolver a maioria dos problemas que envolvem identificação de cobertura do solo para utilização em planejamento energético.
Resumo:
Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas.
Resumo:
O imageamento da porosidade é uma representação gráfica da distribuição lateral da porosidade da rocha, estimada a partir de dados de perfis geofísicos de poço. Apresenta-se aqui uma metodologia para produzir esta imagem geológica, totalmente independente da intervenção do intérprete, através de um algoritmo, dito, interpretativo baseado em dois tipos de redes neurais artificiais. A primeira parte do algoritmo baseia-se em uma rede neural com camada competitiva e é construído para realizar uma interpretação automática do clássico gráfico o Pb - ΦN, produzindo um zoneamento do perfil e a estimativa da porosidade. A segunda parte baseia-se em uma rede neural com função de base radial, projetado para realizar uma integração espacial dos dados, a qual pode ser dividida em duas etapas. A primeira etapa refere-se à correlação de perfis de poço e a segunda à produção de uma estimativa da distribuição lateral da porosidade. Esta metodologia ajudará o intérprete na definição do modelo geológico do reservatório e, talvez o mais importante, o ajudará a desenvolver de um modo mais eficiente as estratégias para o desenvolvimento dos campos de óleo e gás. Os resultados ou as imagens da porosidade são bastante similares às seções geológicas convencionais, especialmente em um ambiente deposicional simples dominado por clásticos, onde um mapa de cores, escalonado em unidades de porosidade aparente para as argilas e efetiva para os arenitos, mostra a variação da porosidade e a disposição geométrica das camadas geológicas ao longo da seção. Esta metodologia é aplicada em dados reais da Formação Lagunillas, na Bacia do Lago Maracaibo, Venezuela.
Resumo:
A permeabilidade e a porosidade são duas das mais importantes propriedades petrofísicas para a qualificação dos reservatórios de óleo e gás. A porosidade está relacionada à capacidade de armazenamento de fluidos e a permeabilidade, com a capacidade de produção destes fluidos. Suas medidas são, normalmente, realizadas em laboratório, através de testemunhos da rocha. Esses processos têm custos elevados e nem todos os poços são testemunhados. As estimativas da permeabilidade e da porosidade são de fundamental importância para os engenheiros de reservatório e geofísicos, uma vez que seus valores podem definir a completação ou não de um poço petrolífero. O perfil de porosidade e sua relação com o perfil de densidade, é bem conhecida na geofísica de poço. No entanto, existem poucas relações quantitativas e/ou qualitativas entre a porosidade e a permeabilidade, como por exemplo as relações de Kozeny. Sendo assim, este trabalho busca o estabelecimento do perfil de permeabilidade e do perfil de porosidade, a partir de informações do perfil de densidade. Para tanto, buscamos a relação entre a propriedade física da rocha (densidade) e as propriedades petrofísicas: permeabilidade e porosidade, utilizando como metodologia à técnica de redes neurais artificiais, como a rede neural artificial com função de base radial. A obtenção da permeabilidade e da porosidade a partir da rede neural artificial, que possui como entrada a informação da densidade possibilita um menor custo para a aquisição dessas importantes informações petrofísicas, permite ao intérprete de perfis de poço optar ou não pela exploração de uma unidade estudada, além de uma visão mais completa do reservatório. Os procedimentos para a estimativa da permeabilidade e da porosidade estão direcionados para uma única formação, mas os intérpretes de perfis poderão aplicar a diretriz apresentada no programa de rede neural artificial com função de base radial, utilizando a estimativa dessas propriedades petrofísicas para outras formações, inclusive de outros campos petrolíferos. Portanto, recomenda-se a utilização de um conjunto de dados completo, com quantidade de dados suficientes de um mesmo poço, a fim de viabilizar corretamente a melhor interpretação.
Identificação automática das primeiras quebras em traços sísmicos por meio de uma rede neural direta
Resumo:
Apesar do avanço tecnológico ocorrido na prospecção sísmica, com a rotina dos levantamentos 2D e 3D, e o significativo aumento na quantidade de dados, a identificação dos tempos de chegada da onda sísmica direta (primeira quebra), que se propaga diretamente do ponto de tiro até a posição dos arranjos de geofones, permanece ainda dependente da avaliação visual do intérprete sísmico. O objetivo desta dissertação, insere-se no processamento sísmico com o intuito de buscar um método eficiente, tal que possibilite a simulação computacional do comportamento visual do intérprete sísmico, através da automação dos processos de tomada de decisão envolvidos na identificação das primeiras quebras em um traço sísmico. Visando, em última análise, preservar o conhecimento intuitivo do intérprete para os casos complexos, nos quais o seu conhecimento será, efetivamente, melhor aproveitado. Recentes descobertas na tecnologia neurocomputacional produziram técnicas que possibilitam a simulação dos aspectos qualitativos envolvidos nos processos visuais de identificação ou interpretação sísmica, com qualidade e aceitabilidade dos resultados. As redes neurais artificiais são uma implementação da tecnologia neurocomputacional e foram, inicialmente, desenvolvidas por neurobiologistas como modelos computacionais do sistema nervoso humano. Elas diferem das técnicas computacionais convencionais pela sua habilidade em adaptar-se ou aprender através de uma repetitiva exposição a exemplos, pela sua tolerância à falta de alguns dos componentes dos dados e pela sua robustez no tratamento com dados contaminados por ruído. O método aqui apresentado baseia-se na aplicação da técnica das redes neurais artificiais para a identificação das primeiras quebras nos traços sísmicos, a partir do estabelecimento de uma conveniente arquitetura para a rede neural artificial do tipo direta, treinada com o algoritmo da retro-propagação do erro. A rede neural artificial é entendida aqui como uma simulação computacional do processo intuitivo de tomada de decisão realizado pelo intérprete sísmico para a identificação das primeiras quebras nos traços sísmicos. A aplicabilidade, eficiência e limitações desta abordagem serão avaliadas em dados sintéticos obtidos a partir da teoria do raio.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Currently new techniques for data processing, such as neural networks, fuzzy logic and hybrid systems are used to develop predictive models of complex systems and to estimate the desired parameters. In this article the use of an adaptive neuro fuzzy inference system was investigated to estimate the productivity of wheat, using a database of combination of the following treatments: five N doses (0, 50, 100, 150 and 200 kg ha(-1)), three sources (Entec, ammonium sulfate and urea), two application times of N (at sowing or at side-dressing) and two wheat cultivars (IAC 370 and E21), that were evaluated during two years in Selviria, Mato Grosso do Sul, Brazil. Through the input and output data, the system of adaptive neuro fuzzy inference learns, and then can estimate a new value of wheat yield with different N doses. The productivity prediciton error of wheat in function of five N doses, using a neuro fuzzy system, was smaller than that one obtained with a quadratic approximation. The results show that the neuro fuzzy system is a viable prediction model for estimating the wheat yield in function of N doses.
Classificação de tábuas de madeira usando processamento de imagens digitais e aprendizado de máquina
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA