866 resultados para Neural networks and clustering
Resumo:
A study on the use of artificial intelligence (AI) techniques for the modelling and subsequent control of an electric resistance spot welding process (ERSW) is presented. The ERSW process is characterized by the coupling of thermal, electrical, mechanical, and metallurgical phenomena. For this reason, early attempts to model it using computational methods established as the methods of finite differences, finite element, and finite volumes, ask for simplifications that lead the model obtained far from reality or very costly in terms of computational costs, to be used in a real-time control system. In this sense, the authors have developed an ERSW controller that uses fuzzy logic to adjust the energy transferred to the weld nugget. The proposed control strategies differ in the speed with which it reaches convergence. Moreover, their application for a quality control of spot weld through artificial neural networks (ANN) is discussed.
Resumo:
Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.
Resumo:
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich`s formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.
Resumo:
Efficiency of presentation of a peptide epitope by a MHC class I molecule depends on two parameters: its binding to the MHC molecule and its generation by intracellular Ag processing. In contrast to the former parameter, the mechanisms underlying peptide selection in Ag processing are poorly understood. Peptide translocation by the TAP transporter is required for presentation of most epitopes and may modulate peptide supply to MHC class I molecules. To study the role of human TAP for peptide presentation by individual HLA class I molecules, we generated artificial neural networks capable of predicting the affinity of TAP for random sequence 9-mer peptides. Using neural network-based predictions of TAP affinity, we found that peptides eluted from three different HLA class I molecules had higher TAP affinities than control peptides with equal binding affinities for the same HLA class I molecules, suggesting that human TAP may contribute to epitope selection. In simulated TAP binding experiments with 408 HLA class I binding peptides, HLA class I molecules differed significantly with respect to TAP affinities of their ligands, As a result, some class I molecules, especially HLA-B27, may be particularly efficient in presentation of cytosolic peptides with low concentrations, while most class I molecules may predominantly present abundant cytosolic peptides.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Aims: The heterogeneity of the Brazilian population renders the extrapolation of pharmacogenomic data derived from well-defined ethnic groups inappropriate. We investigated the influence of self-reported `race/color`, geographical origin and genetic ancestry on the distribution of four VKORC1 SNPs and haplotypes in Brazilians. Comparative data were obtained from two major ancestral roots of Brazilians: Portuguese and Africans from former Portuguese colonies. Materials & methods: A total of 1037 healthy adults Brazilians, recruited at four different geographical regions and self identified as white, brown or black (race/color categories), 89 Portuguese and 216 Africans from Angola and Mozambique were genotyped for the VKORC1 3673G>A (rs9923231), 5808T>G (rs2884737), 6853G>C (rs8050894) and 9041G>A (rs7294) polymorphisms using TaqMan (R) (Applied Biosystems, CA, USA) assays. VKORC1 haplotypes were statistically inferred using the haplo.stats software. We inferred the statistical association between the distribution of the VKORC1 polymorphisms among Brazilians and self-reported color, geographical region and genetic ancestry by fitting multinomial log linear models via neural networks. Individual proportions of European and African ancestry were used to assess the impact of genetic admixture on the frequency distribution of VKORC1 polymorphisms among Brazilians, and for the comparison of Brazilians with Portuguese and Africans. Results: The frequency distribution of the 3673G>A and 5808T>G polymorphisms, and VKORC1 haplotypes among Brazilians varies across geographical regions, within self-reported color categories and according to the individual proportions of European and African genetic ancestry. Notably, the frequency of the warfarin sensitive VKORC1 3673A allele and the distribution of VKORC1 haplotypes varied continuously as the individual proportion of European ancestry increased in the entire cohort, independently of race/color categorization and geographical origin. Brazilians with more than 80% African ancestry differ significantly from Angolans and Mozambicans in frequency of the 3673G>A, 5808T>G and 6853G>C polymorphisms and haplotype distribution, whereas no such differences are observed between Brazilians with more than 90% European ancestry and Portuguese individuals. Conclusion: The diversity of the Brazilian population, evident in the distribution of VKORC1 polymorphisms, must be taken into account in the design of pharmacogenetic clinical trials and dealt with as a continuous variable. Warfarin dosing algorithms that include `race` terms defined for other populations are clearly not applicable to the heterogeneous and extensively admixed Brazilian population.
Resumo:
Context: Cannabis use can both increase and reduce anxiety in humans. The neurophysiological substrates of these effects are unknown. Objective: To investigate the effects of 2 main psycho-active constituents of Cannabis sativa (Delta 9-tetrahydrocannabinol [Delta 9-THC] and cannabidiol [CBD]) on regional brain function during emotional processing. Design: Subjects were studied on 3 separate occasions using an event-related functional magnetic resonance imaging paradigm while viewing faces that implicitly elicited different levels of anxiety. Each scanning session was preceded by the ingestion of either 10 mg of Delta 9-THC, 600 mg of CBD, or a placebo in a double-blind, randomized, placebo-controlled design. Participants: Fifteen healthy, English-native, right-handed men who had used cannabis 15 times or less in their life. Main Outcome Measures: Regional brain activation (blood oxygenation level-dependent response), electrodermal activity (skin conductance response [SCR]), and objective and subjective ratings of anxiety. Results: Delta 9-Tetrahydrocannabinol increased anxiety, as well as levels of intoxication, sedation, and psychotic symptoms, whereas there was a trend for a reduction in anxiety following administration of CBD. The number of SCR fluctuations during the processing of intensely fearful faces increased following administration of Delta 9-THC but decreased following administration of CBD. Cannabidiol attenuated the blood oxygenation level dependent signal in the amygdala and the anterior and posterior cingulate cortex while subjects were processing intensely fearful faces, and its suppression of the amygdalar and anterior cingulate responses was correlated with the concurrent reduction in SCR fluctuations. Delta 9-Tetrahydrocannabinol mainly modulated activation in frontal and parietal areas. Conclusions: Delta 9-Tetrahydrocannabinol and CBD had clearly distinct effects on the neural, electrodermal, and symptomatic response to fearful faces. The effects of CBD on activation in limbic and paralimbic regions may contribute to its ability to reduce autonomic arousal and subjective anxiety, whereas the anxiogenic effects of Delta 9-THC may be related to effects in other brain regions.
Resumo:
This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Measuring perceptions of customers can be a major problem for marketers of tourism and travel services. Much of the problem is to determine which attributes carry most weight in the purchasing decision. Older travellers weigh many travel features before making their travel decisions. This paper presents a descriptive analysis of neural network methodology and provides a research technique that assesses the weighting of different attributes and uses an unsupervised neural network model to describe a consumer-product relationship. The development of this rich class of models was inspired by the neural architecture of the human brain. These models mathematically emulate the neurophysical structure and decision making of the human brain, and, from a statistical perspective, are closely related to generalised linear models. Artificial neural networks or neural networks are, however, nonlinear and do not require the same restrictive assumptions about the relationship between the independent variables and dependent variables. Using neural networks is one way to determine what trade-offs older travellers make as they decide their travel plans. The sample of this study is from a syndicated data source of 200 valid cases from Western Australia. From senior groups, active learner, relaxed family body, careful participants and elementary vacation were identified and discussed. (C) 2003 Published by Elsevier Science Ltd.
Resumo:
Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP) and the medial prefrontal cortex (mPFC) in rats subjected to short term stress (STS) and chronic unpredictable stress (CUS). CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.