970 resultados para Navier-Stokes-Smoluchowski
Resumo:
Three new compounds, AgLnW(2)O(8) (Ln(3+)=Eu, Gd or Tb), have been prepared by a solid-state reaction and crystallize with a scheelite-related monoclinic symmetry. Their IR spectra show absorption transitions in the region 1000-400 cm(-1) similar to KLnW(2)O(8). Broad excitation and emission bands of the tungstate group with a large Stokes shift (12573 cm(-1)) are observed in AgGdW2O8. Excitation and emission spectra of AgLnW(2)O(8) (Ln=Eu or Tb) show that energy transfer from tungstate to Eu and Tb occurs and that Eu3+ ions occupy a unique crystallographic site with C-2 site symmetry.
Resumo:
The Pb2+ luminescence in a series of silicate oxyapatites Me(2)(Y, Gd)(8)(SiO4)(6)O-2, Me(4)Y(6)(SiO4)(6)O (Me = Mg: Ca, Sr) is reported and discussed in relation to the crystal structure. The maximum wavelengths of the excitation (S-1(0)-P-3(1)) and emission (P-3(1)-S-1(0)) bands of Pb2+ are independent of the Mc:Y ratio (2:8 or 4:6) but they have lower energies in MgY-oxyapatites than in CaY- and SrY-oxyapatites. The Stokes shift of Pb2+ luminescence amounts to 11 100 to 11 400 cm(-1): which does not depend strongly on the host composition. There exists a mutual energy transfer between Pb2+ and Gd3+ in Sr2Gd8(SiO4)(6)O-2. At last, the dependence of the energy transfer efficiency of Pb2+-Sm3+, Tb3+: Dy3+ in Sr-2(La: Gd)(8)(SiO4)(6)O-2 and Ca-2(Y, Gd)(8)(SiO4)(6)O-2 on their doping concentrations was studied in more detail.
Resumo:
The luminescence properties of Bi3+, EU(3+), Dy3+ and energy transfer from Bi3+ to Dy3+ and EU(3+) have been studied in two modifications of Y2SiO5 (low-temperature X(1) type and high-temperature X(2) type) and discussed in relation to their crystal structures. The Bi3+ ion luminesces in the blue region of the spectrum in X(1)-Y2SiO5 but in the UV region in X(2)-Y2SiO5. Two obviously different luminescent centres have been observed for Bi3+ and Eu3+ ill X(1)-Y2SiO5, but only one has been seen in X(2)-Y2SiO5. The Stokes shift (9200 cm(-1)) for Bi3+ in X(1)-Y2SiO5 is much larger than that (5000 cm(-1)) in X(2)-Y2SiO5. This suggests that the host lattice is more rigid in X(2)-Y2SiO5 than in X(1)-Y2SiO5. As a result, the Bi3+, EU(3+) and Dy3+ ions show higher emission intensity in the former than in the latter type. X(1)-Y2SiO5 is more suitable for Bi3+ --> EU(3+) energy transfer and X(2)-Y2SiO5 is more suitable for Bi3+ --> Dy3+ energy transfer.
Resumo:
The luminescence properties of Ce3+, Tb3+, Sm3+ and energy transfer from Ce3+ to Tb3+ were studied in two modifications of Y2SiO5 (low temperature X(1) type and high temperature X(2) type). The Ce3+ cation shows lower emission energy and larger Stokes shift in X(1)-Y2SiO5 than in X(2)-Y2SiO5, and the emission intensities of Ce3+, Tb3+, Sm3+ in the former are weaker than those in the latter. There exists an energy transfer from Ce3+ to Tb3+ in both types of Y2SiO5, and the transfer efficiency in X(2) type is higher than that in X(1) type. All of these results are discussed in relation to the crystal structure of Y2SiO5.
Resumo:
该文研究了Eu~(3+)在基质NaMVO_4中的掺杂方式,测定了Eu~(3+)在此基质中的光谱性质.并研究了基质的stokes位移、Eu~(3+)的电荷迁移带和电荷补偿剂Li~+对Eu~(3+)”发光性质的影响.结果表明,Eu~(3+)在此基质中占据偏离反演中心格位,以2个Eu~(3+)取代3个M~(3+)中的两个格位,余下的一个M~(2+)格位由一个空穴取代.而且随Ca,Sr,Ba的变化,Eu~(3+)的电荷迁移带发生红移.
Resumo:
At room temperature, the Bi3+ ion shows broad band characters of its luminescence in Ca2B2O5, M3B2O6 ( M=Ca,Sr ) and SrB4O7. The maxima of the Bi3+ S-1(0)-->P-3(1) absorption bands are located in the range of 240-300nm, but the energy variation of the corresponding P-3(1)-->S-1(0) emissions is very large. The maxima of these emission bands change from 350nm in Ca3B2O6;Bi3+ to 586nm in SrB4O7:Bi3+. The Stokes shift of the Bi3+ luminescence increases from 6118 cm-1, in Ca2B2O5:Bi3+, to 24439 cm-1, in SrB4O7:Bi3+. The emission intensity of the Bi3+ luminescence increases with the decreasing Stokes shift. It has been found that in Ca2B2O5, the Bi3+ ion could transfer its excitation energy to the R3+ ions ( R=Eu, Dy, Sm, Tb ) , but in, Ca3B2O6 and Sr3B2O6, only Bi3+-->Eu3+ was observed. No energy transfer from Bi3+ to R3+ was detected in SrB4O7.
Resumo:
本文报道了不同组成的YP_xV_(1-x)O_4(0≤x≤1):Dy~(3+)的合成和结构。YP_xV_(1-x)O_4(0≤x≤1)为四方晶系,晶胞参数随x的增大呈线性减小。基质的Stokes位移随x的增大逐渐变大,而激发光谱峰值则向短波方向移动。在YP_xV_(1-x)O_4:0.006Dy~(3+)体系中,x>0.4时出现的基质发射是由P0_4~(3-)引起的。基质及Dy~(3+)的发光效率和Dy~(3+)的发光强度的黄蓝比均与x有关。同时探讨了Bi~(3+)和温度对Dy~(3+)的发光强度的影响。
Resumo:
上转换材料是一种能将看不见的红外光变为可见光的一种新型功能材料,其能将几个红外光子合并成一个可见光子、也称为多光子材料。这种反Stokes发光材料具有重要的理论意义和实用价值,为此,自1966年Auzel提出以后就引起人们的重视,近年来又有许多新的报导。不同的上转换材料能将红外光转变成红、绿或兰等颜色可见光,由于绿光处于视觉函数的峰值部份,且一般发绿光的上转换材料相对强度较好,因此研究与应用较多。国内外曾将红外变可见上转换材料用于固体灯,而我们首先将其用于Nd~(3+)激光和0.9μm半导体激光显示,已取得良好的效果,并作为某些激光器的配件。目前所使用的上转换材料显示片是将上转换材料涂在铝片或玻璃片上,铝片不能透光限制了它的应用,而玻璃片易碎和容易脱
Resumo:
The tess potential-concentration curve was first applied to measure the concentration of an alloy. Attempt to use the V-c curve of Al-Li alloy in measuring the diffusion coeffictent of Li atom in liquid aluminium with anode chronopotentiometry at 720℃, was made and D_(Li/Al=4.94×10~(-5)cm~2·s~(-1) was obtained. The value is well consistent wish the theoretical value, D_(Li/Al)=4.85×10~(-5)cm~2·s~(-1) in terms of Stokes-Einstein equation.
Resumo:
首次尝试利用开路电位-浓度曲线法测定合金的浓度,并用阳极计时电位法快速测定Li在液态Al中的扩散系数,720℃下Li在液态Al中的扩散系数D_(Li/Al)=4.94×10~(-5)cm~2·s~(-1),与根据Stokes-Einstein方程计算得到的理论值D_(Li/Al)=4.85×10~(-5)cm~2·s~(-1)相吻合。
Resumo:
相干反斯托克斯喇曼光谱(Coherent Anti-Stokes Raman Spectra,简称CARS)是一种非线性光学混频过程。同时使用两条入射激光束聚焦于样品,输出相当于反-斯托克斯频率光束。量子效率可达1%,散射强度比自发喇曼谱高10~5倍以上,连续CARS谱分辩率为0.01cm~(-1)。这种具有高空间分辩、高抗荧光干扰、高分辩率及高效率等特点的CARS技术,
Resumo:
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.
Resumo:
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Interfacial waves propagating along the interface between a three-dimensional two-fluid system with a rigid upper boundary and an uneven bottom are considered. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. A set of higher-order Boussinesq-type equations in terms of the depth-averaged velocities accounting for stronger nonlinearity are derived. When the small parameter measuring frequency dispersion keeping up to lower-order and full nonlinearity are considered, the equations include the Choi and Camassa's results (1999). The enhanced equations in terms of the depth-averaged velocities are obtained by applying the enhancement technique introduced by Madsen et al. (1991) and Schaffer and Madsen (1995a). It is noted that the equations derived from the present study include, as special cases, those obtained by Madsen and Schaffer (1998). By comparison with the dispersion relation of the linear Stokes waves, we found that the dispersion relation is more improved than Choi and Camassa's (1999) results, and the applicable scope of water depth is deeper.
Resumo:
A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.