902 resultados para Native speakerism
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Native People of the American Northwest: Population History from the Perspective of Skull Morphology
Resumo:
Over the last several decades, human activities have resulted in environmental changes that have increased the number of stressors that can act on a single environment. In Canadian Shield lakes, two recent stressors, the invasion of Bythotrephes longimanus and calcium decline, have been documented. Widespread acidification of hundreds of North American lakes has resulted in the precipitous decline of lake water calcium concentration. Crustacean zooplankton with high calcium demands are likely to be vulnerable to calcium decline, especially <1.5 mg Ca/L, where survival and reproduction rates are reduced. These taxa are also vulnerable to predation by Bythotrephes that has been implicated in the loss of pelagic biodiversity in soft water lakes. Despite laboratory and field studies aimed at understanding the independent impact of these stressors, it is unclear how their co-occurrence will influence community response. Using a combination of data from a large regional lake survey and field experiments, I examined the individual and joint effects of Bythotrephes and calcium decline on native zooplankton community structure. Results demonstrated that much is known about Bythotrephes and our findings of reduced total zooplankton and species richness, due to the loss of Cladocera, are consistent with field surveys and other experimental studies. While we did not detect strong evidence for an effect of calcium on zooplankton using the lowest calcium concentration among invaded lakes (1.2 mg Ca/L), there is evidence that, as lake water calcium concentrations fall <1 mg Ca/L, per capita growth rates of a broad variety of taxa are expected to decline. At the regional scale, negative effects of Bythotrephes and calcium on abundances of small cladocerans and Daphnia pulicaria, respectively, were in agreement with my experimental observations. We also observed significant interactions between Bythotrephes and calcium for a broad variety of taxa. As Bythotrephes continues to spread and invade lakes that are also declining in aqueous calcium, both stressors are likely to amplify negative effects on Cladocera that appear the most vulnerable. Loss of these important zooplankton in response to both Bythotrephes and calcium decline, is likely to lower zooplankton productivity, with potential effects on phytoplankton and higher trophic levels.
Resumo:
As a result of a floristic survey carried out in riparian habitats of northern Spain, new chorological data are provided for 9 alien and 6 native plant species. Some species are reported for the first time at regional scale, such as Carex strigosa, Helianthus x laetiflorus and Persicaria pensylvanica in Cantabria. Also noteworthy is the finding of naturalised populations of the North American grass Muhlenbergia schreberi at the Urumea river basin, which represents the second reference for the Iberian Peninsula.
Resumo:
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.
Resumo:
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.