968 resultados para National Personnel Records Center (U.S.)--Records and correspondence
Resumo:
Amphibian declines and extinctions have been documented around the world, often in protected natural areas. Concern for this trend has prompted the U.S. Geological Survey and the National Park Service to document all species of amphibians that occur within U.S. National Parks and to search for any signs that amphibians may be declining. This study, an inventory of amphibian species in Big Cypress National Preserve, was conducted from 2002 to 2003. The goals of the project were to create a georeferenced inventory of amphibian species, use new analytical techniques to estimate proportion of sites occupied by each species, look for any signs of amphibian decline (missing species, disease, die-offs, and so forth.), and to establish a protocol that could be used for future monitoring efforts. Several sampling methods were used to accomplish these goals. Visual encounter surveys and anuran vocalization surveys were conducted in all habitats throughout the park to estimate the proportion of sites or proportion of area occupied (PAO) by each amphibian species in each habitat. Opportunistic collections, as well as limited drift fence data, were used to augment the visual encounter methods for highly aquatic or cryptic species. A total of 545 visits to 104 sites were conducted for standard sampling alone, and 2,358 individual amphibians and 374 reptiles were encountered. Data analysis was conducted in program PRESENCE to provide PAO estimates for each of the anuran species. All of the amphibian species historically found in Big Cypress National Preserve were detected during this project. At least one individual of each of the four salamander species was captured during sampling. Each of the anuran species in the preserve was adequately sampled using standard herpetological sampling methods, and PAO estimates were produced for each species of anuran by habitat. This information serves as an indicator of habitat associations of the species and relative abundance of sites occupied, but it will also be useful as a comparative baseline for future monitoring efforts. In addition to sampling for amphibians, all encounters with reptiles were documented. The sampling methods used for detecting amphibians are also appropriate for many reptile species. These reptile locations are included in this report, but the number of reptile observations was not sufficient to estimate PAO for reptile species. We encountered 35 of the 46 species of reptiles believed to be present in Big Cypress National Preserve during this study, and evidence exists of the presence of four other reptile species in the Preserve. This study found no evidence of amphibian decline in Big Cypress National Preserve. Although no evidence of decline was observed, several threats to amphibians were identified. Introduced species, especially the Cuban treefrog (Osteopilus septentrionalis), are predators and competitors with several native frog species. The recreational use of off-road vehicles has the potential to affect some amphibian populations, and a study on those potential impacts is currently underway. Also, interference by humans with the natural hydrologic cycle of south Florida has the potential to alter the amphibian community. Continued monitoring of the amphibian species in Big Cypress National Preserve is recommended. The methods used in this study were adequate to produce reliable estimates of the proportion of sites occupied by most anuran species, and are a cost-effective means of determining the status of their populations.
Resumo:
Systematic surveys, along with opportunistic sightings, have provided important information on sea turtle (Cheloniidae and Dermochelydae) distributions, knowledge which can help reduce the risk of harmful human interaction. In 1991 and 1992, the Marine Recreational Fishery Sta- tistics Survey (MRFSS) of the National Ma- rine Fisheries Service, NOAA, provided a unique opportunity to gain additional, synoptic information on the spatial and temporal distribution of sea turtles along the U.S. Atlantic and Gulf of Mexico coasts by asking recreational anglers if they had observed a sea turtle on their fishing trip. During the spring and summer months of those years, as water temperatures warmed, the MRFSS documented an increase in sea turtle sightings in inshore waters and in a northward direction along the U.S. Atlantic Coast and in a westward direction along the northern Gulf of Mexico. This pattern reversed in the late summer and fall months as water temperatures cooled, with sea turtles concentrating along Georgia and both coasts of Florida. Although the MRFSS did not provide species or size composition of sea turtles sighted, and effort varied depending upon location of fishing activity and time of year anglers were queried, it did provide an additional and useful means of ascertaining spatial and temporal distributions of sea turtles along these coasts.
Resumo:
This is the report on the Crayfish Survey of the Weaver, Dane, Goyt and Etherow catchments from 1998 by the Environment Agency. The aims of this report are: Firstly, to present the findings of the crayfish survey and details of the sites visited. Secondly to present the information on distribution maps with past records so that the current status can be seen and finally to use this information so that recommendations for the conservation of native crayfish can be made in accordance with the national action plan for this species and the Environment Agency’s Species Management Programme. The report contains sections on background, going through legislation, distribution and requirements of both native and non-native crayfish. Sections on methodology, results and discussion, conclusion and recommendations. The appendix I contains maps showing the sampling points locations. Details of sampling sites are summarized in appendix II. Appendix III contains previous crayfish records and Appendix IV shows the field data recording form. Finally, a collection of photographs are displayed in appendix V.
Resumo:
The St. Croix East End Marine Park (STXEEMP) was established in 2003 as the first multi-use marine park managed by the U.S. Virgin Islands Department of Planning and Natural Resources. It encompasses an area of approximately 155 km2 and is entirely within Territorial waters which extend up to 3 nautical miles from shore. As stated in the 2002 management plan, the original goals were to: protect and maintain the biological diversity and other natural values of the area; promote sound management practices for sustainable production purposes; protect the natural resource base from being alienated for other land use purposes that would be detrimental to the area’s biological diversity; and to contribute to regional and national development (The Nature Conservancy, 2002). At the time of its establishment, there were substantial data gaps in knowledge about living marine resources in the St. Croix, and existing data were inadequate for establishing baselines from which to measure the future performance of the various management zones within the park. In response to these data gaps, National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) worked with territorial partners to characterize and assess the status of the marine environment in and around the STXEEMP and land-based stressors that affect them. This project collected and analyzed data on the distribution, diversity and landscape condition of marine communities across the STXEEMP. Specifically, this project characterized (1) landscape and adjacent seascape condition relevant to threats to coral reef ecosystem health, and (2) the marine communities within STXEEMP zones to increase local knowledge of resources exposed to different regulations and stressors.
Resumo:
NOAA’s National Centers for Coastal Ocean Science (NCCOS)-Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch, National Park Service (NPS), US Geological Survey, and the University of Hawaii used acoustic telemetry to quantify spatial patterns and habitat affinities of reef fishes around the island of St. John, US Virgin Islands. The objective of the study was to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef National Monument (VICRNM), the Virgin Islands National Park (VIIS), and Territorial waters surrounding St. John. In order to better understand species’ habitat utilization patterns among management regimes, we deployed an array of hydroacoustic receivers and acoustically tagged reef fishes. Thirty six receivers were deployed in shallow near-shore bays and across the shelf to depths of approximately 30 m. One hundred eighty four individual fishes were tagged representing 19 species from 10 different families with VEMCO V9-2L-R64K transmitters. The array provides fish movement information at fine (e.g., day-night and 100s meters within a bay) to broad spatial and temporal scales (multiple years and 1000s meters across the shelf). The long term multi-year tracking project provides direct evidence of connectivity across habitat types in the seascape and among management units. An important finding for management was that a number of individuals moved among management units (VICRNM, VINP, Territorial waters) and several snapper moved from near-shore protected areas to offshore shelf-edge spawning aggregations. However, most individuals spent the majority of their time with VIIS and VICRNM, with only a few wide-ranging species moving outside the management units. Five species of snappers (Lutjanidae) accounted for 31% of all individuals tagged, followed by three species of grunts (Haemulidae) accounting for an additional 23% of the total. No other family had more than a single species represented in the study. Bluestripe grunt (Haemulon sciurus) comprised 22% of all individuals tagged, followed by lane snappers (Lutjanus synagris) at 21%, bar jack (Carangoides ruber) at 11%, and saucereye porgy (Calamus calamus) at 10%. The largest individual tagged was a 70 cm TL nurse shark (Ginglymostoma cirratum), followed by a 65 cm mutton snapper (Lutjanus analis), a 47 cm bar jack, and a 41 cm dog snapper (Lutjanus jocu). The smallest individuals tagged were a 19 cm blue tang (Acanthurus coeruleus) and a 19.2 cm doctorfish (Acanthurus chirurgus). Of the 40 bluestriped grunt acoustically tagged, 73% were detected on the receiver array. The average days at large (DAL) was 249 (just over 8 months), with one individual detected for 930 days (over two and a half years). Lane snapper were the next most abundant species tagged (N = 38) with 89% detected on the array. The average days at large (DAL) was 221 with one individual detected for 351 days. Seventy-one percent of the bar jacks (N = 21) were detected on the array with the average DALs at 47 days. All of the mutton snapper (N = 12) were detected on the array with an average DAL of 273 and the longest at 784. The average maximum distance travelled (MDT) was ca. 2 km with large variations among species. Grunts, snappers, jacks, and porgies showed the greatest movements. Among all individuals across species, there was a positive and significant correlation between size of individuals and MDT and between DAL and MDT.
Resumo:
NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively compare different marine ecosystems in tropical U.S. waters. The Biogeography Branch used these same general protocols to generate three seamless habitat maps of the Bank/Shelf (i.e., from 0 ≤50 meters) and the Bank/Shelf Escarpment (i.e., from 50 ≤1,000 meters and from 1,000 ≤ 1,830 meters) inside Buck Island Reef National Monument (BIRNM). While this mapping effort marks the fourth time that the shallow-water habitats of BIRNM have been mapped, it is the first time habitats deeper than 30 meters (m) have been characterized. Consequently, this habitat map provides information on the distribution of mesophotic and deep-water coral reef ecosystems and serves as a spatial baseline for monitoring change in the Monument. A benthic habitat map was developed for approximately 74.3 square kilometers or 98% of the BIRNM using a combination of semi-automated and manual classification methods. The remaining 2% was not mapped due to lack of imagery in the western part of the Monument at depths ranging from 1,000 to 1,400 meters. Habitats were interpreted from orthophotographs, LiDAR (Light Detection and Ranging) imagery and four different types of MBES (Multibeam Echosounder) imagery. Three minimum mapping units (MMUs) (100, 1,000 and 5,000 square meters) were used because of the wide range of depths present in the Monument. The majority of the area that was characterized was deeper than 30 m on the Bank/Shelf Escarpment. This escarpment area was dominated by uncolonized sand which transitioned to mud as depth increased. Bedrock was exposed in some areas of the escarpment, where steep slopes prevented sediment deposition. Mesophotic corals were seen in the underwater video, but were too sparsely distributed to be reliably mapped from the source imagery. Habitats on the Bank/Shelf were much more variable than those seen on the Bank/Shelf Escarpment. The majority of this shelf area was comprised of coral reef and hardbottom habitat dominated by various forms of turf, fleshy, coralline or filamentous algae. Even though algae was the dominant biological cover type, nearly a quarter (24.3%) of the Monument’s Bank/Shelf benthos hosted a cover of 10%-<50% live coral. In total, 198 unique combinations of habitat classes describing the geography, geology and biology of the sea-floor were identified from the three types of imagery listed above. No thematic accuracy assessment was conducted for areas deeper than about 50 meters, most of which was located in the Bank/Shelf Escarpment. The thematic accuracy of classes in waters shallower than approximately 50 meters ranged from 81.4% to 94.4%. These thematic accuracies are similar to those reported for other NOAA benthic habitat mapping efforts in St. John (>80%), the Main Eight Hawaiian Islands (>84.0%) and the Republic of Palau (>80.0%). These digital maps products can be used with confidence by scientists and resource managers for a multitude of different applications, including structuring monitoring programs, supporting management decisions, and establishing and managing marine conservation areas. The final deliverables for this project, including the benthic habitat maps, source imagery and in situ field data, are available to the public on a NOAA Biogeography Branch website (http://ccma.nos.noaa.gov/ecosystems/coralreef/stcroix.aspx) and through an interactive, web-based map application (http://ccma.nos.noaa.gov/explorer/biomapper/biomapper.html?id=BUIS). This report documents the process and methods used to create the shallow to deep-water benthic habitat maps for BIRNM. Chapter 1 provides a short introduction to BIRNM, including its history, marine life and ongoing research activities. Chapter 2 describes the benthic habitat classification scheme used to partition the different habitats into ecologically relevant groups. Chapter 3 explains the steps required to create a benthic habitat map using a combination of semi-automated and visual classification techniques. Chapter 4 details the steps used in the accuracy assessment and reports on the thematic accuracy of the final shallow-water map. Chapter 5 summarizes the type and abundance of each habitat class found inside BIRNM, how these habitats compare to past habitat maps and outlines how these new habitat maps may be used to inform future management activities.
Resumo:
NOAA’s Coral Reef Conservation program (CRCP) develops coral reef management priorities by bringing together various partners to better understand threats to coral reef ecosystems with the goal of conserving, protecting and restoring these resources. Place-based and ecosystem-based management approaches employed by CRCP require that spatially explicit information about benthic habitats and fish utilization are available to characterize coral reef ecosystems and set conservation priorities. To accomplish this, seafloor habitat mapping of coral reefs around the U.S. Virgin Islands (USVI) and Puerto Rico has been ongoing since 2004. In 2008, fishery acoustics surveys were added to NOAA survey missions in the USVI and Puerto Rico to assess fish distribution and abundance in relation to benthic habitats in high priority conservation areas. NOAA’s National Centers for Coastal Ocean Science (NCCOS) have developed fisheries acoustics survey capabilities onboard the NOAA ship Nancy Foster to complement the CRCP seafloor habitat mapping effort spearheaded by the Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB). The integration of these activities has evolved on the Nancy Foster over the three years summarized in this report. A strategy for improved operations and products has emerged over that time. Not only has the concurrent operation of multibeam and fisheries acoustics surveys been beneficial in terms of optimizing ship time and resources, this joint effort has advanced an integrated approach to characterizing bottom and mid-water habitats and the fishes associated with them. CCMA conducts multibeam surveys to systematically map and characterize coral reef ecosystems, resulting in products such as high resolution bathymetric maps, backscatter information, and benthic habitat classification maps. These products focus on benthic features and live bottom habitats associated with them. NCCOS Centers (the Center for Coastal Fisheries and Habitat Research and the Center for Coastal Environmental Health and Biomolecular Research) characterize coral reef ecosystems by using fisheries acoustics methods to capture biological information through the entire water column. Spatially-explicit information on marine resources derived from fisheries acoustics surveys, such as maps of fish density, supports marine spatial planning strategies and decision making by providing a biological metric for evaluating coral reef ecosystems and assessing impacts from pollution, fishing pressure, and climate change. Data from fisheries acoustics surveys address management needs by providing a measure of biomass in management areas, detecting spatial and temporal responses in distribution relative to natural and anthropogenic impacts, and identifying hotspots that support high fish abundance or fish aggregations. Fisheries acoustics surveys conducted alongside multibeam mapping efforts inherently couple water column data with information on benthic habitats and provide information on the heterogeneity of both benthic habitats and biota in the water column. Building on this information serves to inform resource managers regarding how fishes are organized around habitat structure and the scale at which these relationships are important. Where resource managers require place-based assessments regarding the location of critical habitats along with high abundances of fish, concurrent multibeam and fisheries acoustics surveys serve as an important tool for characterizing and prioritizing coral reef ecosystems. This report summarizes the evolution of fisheries acoustics surveys onboard the NOAA ship Nancy Foster from 2008 to 2010, in conjunction with multibeam data collection, aimed at characterizing benthic and mid-water habitats in high priority conservation areas around the USVI and Puerto Rico. It also serves as a resource for the continued development of consistent data products derived from acoustic surveys. By focusing on the activities of 2010, this report highlights the progress made to date and illustrates the potential application of fisheries data derived from acoustic surveys to the management of coral reef ecosystems.
Resumo:
Coral reef ecosystems of the Virgin Islands Coral Reef National Monument, Virgin Islands National Park and the surrounding waters of St. John, U.S. Virgin Islands are a precious natural resource worthy of special protection and conservation. The mosaic of habitats including coral reefs, seagrasses and mangroves, are home to a diversity of marine organisms. These benthic habitats and their associated inhabitants provide many important ecosystem services to the community of St. John, such as fishing, tourism and shoreline protection. However, coral reef ecosystems throughout the U.S. Caribbean are under increasing pressure from environmental and anthropogenic stressors that threaten to destroy the natural heritage of these marine habitats. Mapping of benthic habitats is an integral component of any effective ecosystem-based management approach. Through the implementation of a multi-year interagency agreement, NOAA’s Center for Coastal Monitoring and Assessment - Biogeography Branch and the U.S. National Park Service (NPS) have completed benthic habitat mapping, field validation and accuracy assessment of maps for the nearshore marine environment of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean and replaces previous NOAA maps generated by Kendall et al. (2001) for the waters around St. John. The use of standardized protocols enables the condition of the coral reef ecosystems around St. John to be evaluated in context to the rest of the Virgin Island Territories and other U.S. coral ecosystems. The products from this effort provide an accurate assessment of the abundance and distribution of marine habitats surrounding St. John to support more effective management and conservation of ocean resources within the National Park system. This report documents the entire process of benthic habitat mapping in St. John. Chapter 1 provides a description of the benthic habitat classification scheme used to categorize the different habitats existing in the nearshore environment. Chapter 2 describes the steps required to create a benthic habitat map from visual interpretation of remotely sensed imagery. Chapter 3 details the process of accuracy assessment and reports on the thematic accuracy of the final maps. Finally, Chapter 4 is a summary of the basic map content and compares the new maps to a previous NOAA effort. Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. Overhead imagery, including color orthophotography and IKONOS satellite imagery, proved to be an excellent source from which to visually interpret the location, extent and attributes of marine habitats. NOAA scientists were able to accurately and reliably delineate the boundaries of features on digital imagery using a Geographic Information System (GIS) and fi eld investigations. The St. John habitat classification scheme defined benthic communities on the basis of four primary coral reef ecosystem attributes: 1) broad geographic zone, 2) geomorphological structure type, 3) dominant biological cover, and 4) degree of live coral cover. Every feature in the benthic habitat map was assigned a designation at each level of the scheme. The ability to apply any component of this scheme was dependent on being able to identify and delineate a given feature in remotely sensed imagery.
Resumo:
The National Oceanic and Atmospheric Administration’s (NOAA) Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch and the U.S. National Park Service (NPS) have completed mapping the moderate-depth marine environment south of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean. The standardized protocols used in this effort will enable scientists and managers to quantitatively compare moderate-depth coral reef ecosystems around St. John to those throughout the U.S. Territories. These protocols and products will also help support the effective management and conservation of the marine resources within the National Park system.
Resumo:
The National Shark Research Consortium (NSRC) includes the Center for Shark Research at Mote Marine Laboratory, the Pacific Shark Research Center at Moss Landing Marine Laboratories, the Shark Research Program at the Virginia Institute of Marine Science, and the Florida Program for Shark Research at the University of Florida. The consortium objectives include shark-related research in the Gulf of Mexico and along the Atlantic and Pacific coasts of the U.S., education and scientific cooperation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): There is considerable seasonal-to-interannual variability in the runoff of major watersheds in the Sierra Nevada, Coastal, and Cascade ranges of California and southwestern Oregon. This variability is reflected in both the amount and timing of runoff. This study examines that variability using long historical streamflow records and seasonal mean temperature and precipitation. ... Precipitation is the only significant predictor for both amount and timing of runoff in the low elevation basins. As elevation increases, the models rely more and more on temperature to explain amount and timing of runoff.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The purpose of this study is to determine: (1) whether the cooperative station snow depth contains useful weather and climate information, (2) how cooperative snow depth variability is related to snowcourse variability, and (3) how it is related to other weather elements. From an examination of stations in the Sierra Nevada of California, it is clear that cooperative snow records and snowcourse records have consistent spatial and temporal variability. ... We show that high snow ratio (low density snow or high SD/Ppt) events have low temperatures and high amplitude atmospheric circulation patterns over the eastern North Pacific. In contrast, low snow ratio (high density or low SD/Ppt) events have warm temperatures and a zonal flow pattern with a southerly displaced storm track from Hawaii to the West Coast.
Resumo:
Manu National Park of southern Peru is one of the most renowned protected areas in the world, yet large-bodied vertebrate surveys conducted to date have been restricted to Cocha Cashu Biological Station, a research station covering <0.06 percent of the 1.7Mha park. Manu Park is occupied by >460 settled Matsigenka Amerindians, 300-400 isolated Matsigenka, and several, little-known groups of isolated hunter-gatherers, yet the impact of these native Amazonians on game vertebrate populations within the park remains poorly understood. On the basis of 1495 km of standardized line-transect censuses, we present density and biomass estimates for 23 mammal, bird, and reptile species for seven lowland and upland forest sites in Manu Park, including Cocha Cashu. We compare these estimates between hunted and nonhunted sites within Manu Park, and with other Neotropical forest sites. Manu Park safeguards some of the most species-rich and highest biomass assemblages of arboreal and terrestrial mammals ever recorded in Neotropical forests, most likely because of its direct Andean influence and high levels of soil fertility. Relative to Barro Colorado Island, seed predators and arboreal folivores in Manu are rare, and generalist frugivores specializing on mature fruit pulp are abundant. The impact of such a qualitative shift in the vertebrate community on the dynamics of plant regeneration, and therefore, on our understanding of tropical plant ecology, must be profound. Despite a number of external threats, Manu Park continues to serve as a baseline against which other Neotropical forests can be gauged.
Resumo:
1. The stripe-backed weasel Mustela strigidorsa is one of the rarest and least-known mustelids in the world. Its phylogenetic relationships with other Mustela species remain controversial, though several unique morphological features distinguish it from congeners. 2. It probably lives mainly in evergreen forests in hills and mountains, but has also been recorded from plains forest, dense scrub, secondary forest, grassland and farmland. Known sites range in altitude from 90 m to 2500 m. Data are insufficient to distinguish between habitat and altitudes which support populations, and those where only dispersing animals may occur. 3. It has been confirmed from many localities in north-east India, north and central Myanmar, south China, north Thailand, north and central Laos, and north and central Vietnam. Given the limited survey effort, the number of recent records shows that the species is not as rare as hitherto believed. Neither specific nor urgent conservation needs are apparent.
Resumo:
Background Chronic illness and premature mortality from malaria, water-borne diseases, and respiratory illnesses have long been known to diminish the welfare of individuals and households in developing countries. Previous research has also shown that chronic diseases among farming populations suppress labor productivity and agricultural output. As the illness and death toll from HIV/AIDS continues to climb in most of sub-Saharan Africa, concern has arisen that the loss of household labor it causes will reduce crop yields, impoverish farming households, intensify malnutrition, and suppress growth in the agricultural sector. If chronic morbidity and premature mortality among individuals in farming households have substantial impacts on household production, and if a large number of households are affected, it is possible that an increase in morbidity and mortality from HIV/AIDS or other diseases could affect national aggregate output and exports. If, on the other hand, the impact at the household farm level is modest, or if relatively few households are affected, there is likely to be little effect on aggregate production across an entire country. Which of these outcomes is more likely in West Africa is unknown. Little rigorous, quantitative research has been published on the impacts of AIDS on smallholder farm production, particularly in West Africa. The handful of studies that have been conducted have looked mainly at small populations in areas of very high HIV prevalence in southern and eastern Africa. Conclusions about how HIV/AIDS, and other causes of chronic morbidity and mortality, are affecting agriculture across the continent cannot be drawn from these studies. In view of the importance of agriculture, and particularly smallholder agriculture, in the economies of most African countries and the scarcity of resources for health interventions, it is valuable to identify, describe, and quantify the impact of chronic morbidity and mortality on smallholder production of important crops in West Africa. One such crop is cocoa. In Ghana, cocoa is a crop of national importance that is produced almost exclusively by smallholder households. In 2003, Ghana was the world’s second-largest producer of cocoa. Cocoa accounted for a quarter of Ghana’s export revenues that year and generated 15 percent of employment. The success and growth of the cocoa industry is thus vital to the country’s overall social and economic development. Study Objectives and Methods In February and March 2005, the Center for International Health and Development of Boston University (CIHD) and the Department of Agricultural Economics and Agribusiness (DAEA) of the University of Ghana, with financial support from the Africa Bureau of the U.S. Agency for International Development and from Mars, Inc., which is a major purchaser of West African cocoa, conducted a survey of a random sample of cocoa farming households in the Western Region of Ghana. The survey documented the extent of chronic morbidity and mortality in cocoa growing households in the Western Region of Ghana, the country’s largest cocoa growing region, and analyzed the impact of morbidity and mortality on cocoa production. It aimed to answer three specific research questions. (1) What is the baseline status of the study population in terms of household size and composition, acute and chronic morbidity, recent mortality, and cocoa production? (2) What is the relationship between household size and cocoa production, and how can this relationship be used to understand the impact of adult mortality and chronic morbidity on the production of cocoa at the household level? The study population was the approximately 42,000 cocoa farming households in the southern part of Ghana’s Western Region. A random sample of households was selected from a roster of eligible households developed from existing administrative information. Under the supervision of the University of Ghana field team, enumerators were graduate students of the Department of Agricultural Economics and Agribusiness or employees of the Cocoa Services Division. A total of 632 eligible farmers participated in the survey. Of these, 610 provided complete responses to all questions needed to complete the multivariate statistical analysis reported here.