932 resultados para Nation Building


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural ventilation of a building, flanked by others forming urban canyons and driven by the combined forces of wind and thermal buoyancy, has been studied experimentally at small scale. The aim was to improve our understanding of the effect of the urban canyon geometry on passive building ventilation. The steady ventilation of an isolated building was observed to change dramatically, both in terms of the thermal stratification and airflow rate, when placed within the confines of urban canyons. The ventilation flows and internal stratifications observed at small scale are presented for a range of canyon widths (building densities) and wind speeds. Two typical opening arrangements are considered. Flanking an otherwise isolated building with others of similar geometry as in a typical urban canyon was shown to reverse the effect of wind on the thermally-driven ventilation. As a consequence, neglecting the surrounding geometry when designing naturally-ventilated buildings may result in poor ventilation. Further implications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urbanisation is the great driving force of the twenty-first century. Cities are associated with both productivity and creativity, and the benefits offered by closely connected and high density living and working contribute to sustainability. At the same time, cities need extensive infrastructure – like water, power, sanitation and transportation systems – to operate effectively. Cities therefore comprise multiple components, forming both static and dynamic systems that are interconnected directly and indirectly on a number of levels, all forming the backdrop for the interaction of people and processes. Bringing together large numbers of people and complex products in rich interactions can lead to vulnerability from hazards, threats and even trends, whether natural hazards, epidemics, political upheaval, demographic changes, economic instability and/or mechanical failures; The key to countering vulnerability is the identification of critical systems and clear understanding of their interactions and dependencies. Critical systems can be assessed methodically to determine the implications of their failure and their interconnectivities with other systems to identify options. The overriding need is to support resilience – defined here as the degree to which a system or systems can continue to function effectively in a changing environment. Cities need to recognise the significance of devising adaptation strategies and processes to address a multitude of uncertainties relating to climate, economy, growth and demography. In this paper we put forward a framework to support cities in understanding the hazards, threats and trends that can make them vulnerable to unexpected changes and unpredictable shocks. The framework draws on an asset model of the city, in which components that contribute to resilience include social capital, economic assets, manufactured assets, and governance. The paper reviews the field, and draws together an overarching framework intended to help cities plan a robust trajectory towards increased resilience through flexibility, resourcefulness and responsiveness. It presents some brief case studies demonstrating the applicability of the proposed framework to a wide variety of circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the biggest issues for underground construction in a densely built-up urban environment is the potentially adverse impact on buildings adjacent to deep excavations. In Singapore, a building damage assessment is usually carried out using a three-staged approach to assess the risk of damage caused by major underground construction projects. However, the tensile strains used for assessing the risk of building damage are often derived using deflection ratios and horizontal strains under 'greenfield' conditions. This ignores the effects of building stiffness and in many cases may be conservative. This paper presents some findings from a study on the response of buildings to deep excavations. Firstly, the paper discusses the settlement response of an actual building - the Singapore Art Museum - adjacent to a deep excavation. By comparing the monitored building settlement with the adjacent ground settlement markers, the influence of building stiffness in modifying the response to excavation-induced settlements is observed. Using the finite element method, a numerical study on the building response to movements induced by deep excavations found a consistent relationship between the building modification factor and a newly defined relative bending stiffness of the building. This relationship can be used as a design guidance to estimate the deflection ratio in a building from the greenfield condition. By comparing the case study results with the design guidance developed from finite element analysis, this paper presents some important characteristics of the influence of building stiffness on building damages for deep excavations.