977 resultados para Nanoscale electronic properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Size-dependent elastic constants are investigated theoretically with reference to a nanoscale single-crystal thin film. A three-dimensional _3D_ model is presented with the relaxation on the surface of the nanofilm taken into consideration. The constitutive relation of the 3D model is derived by using the energy approach, and analytical expressions for the four nonzero elastic constants of the nanofilm are obtained. The size effects of the four elastic constants are then discussed, and the dependence of these elastic constants on the surface relaxation and the ambiguity in the definition of the thickness of the nanofilm are also analyzed. In addition, the elastic moduli of the nanofilm in two kinds of plane problem are obtained and discussed in the case of a special boundary condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The band structure of the Bi layered perovskite SrBi2Ta2O9 (SBT) has been calculated by the tight binding method. We find both the valence and conduction band edges to consist of states primarily derived from the Bi-O layer rather than the perovskite Sr-Ta-O block. The valence band maximum arises from O p and some Bi s states, while the conduction band minimum consists of Bi p states, with a band gap of 5.1 eV. It is argued that the Bi-O layers largely control the electronic response of SBT while the ferroelectric response originates from the perovskite Sr-Ta-O block. Bi and Ta centered traps are calculated to be shallow, which may account in part for the excellent fatigue properties of SBT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The band structure of the layered perovskite SrBi2Ta2O9 (SBT) was calculated by tight binding and the valence band density of states was measured by x-ray photoemission spectroscopy. We find both the valence and conduction band edges to consist of states primarily derived from the Bi-O layer rather than the perovskite Sr-Ta-O blocks. The valence band maximum arises from O p and some Bi s states, while the conduction band minimum consists of Bi p states, with a wide band gap of 5.1 eV. It is argued that the Bi-O layers largely control the electronic response whereas the ferroelectric response originates mainly from the perovskite Sr-Ta-O block. Bi and Ta centered traps are calculated to be shallow, which may account in part for its excellent fatigue properties. © 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead magnesium niobate-lead titanate (PMN-PT) is an intriguing candidate for applications in many electronic devices such as multi-layer capacitors, electro-mechanical transducers etc. because of its high dielectric constant, low dielectric loss and high strain near the Curie temperature. As an extension of our previous work on Ta-doped PMNT-PT aimed at optimizing the performance and reducing the cost, this paper focuses on the effect of Pb volatilization on the dielectric properties of 0.77Pb(Mg1/3(Nb0.9Ta0.1)2/3)O3-0.23PbTiO3. The dielectric constant and loss of the samples are measured at different frequencies and different temperatures. The phase purity of this compound is determined by X-ray diffraction pattern. It is found that the volatilization during sintering does influence the phase formation and dielectric properties. The best condition is sintering with 0.5 g extra PbO around a 4 g PMNT-PT sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics ( MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics ( MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the framework of second-order Rayleigh-Schrodinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Frohlich's Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decays of the ψ(3770) resonance to final states that do not contain charmed D mesons are measured for the first time. Using a sample of 9.3pb ^(-1) of e^+e^- annihilations at √s = 3.77 GeV, collected with the Mark III detector at SPEAR, we have measured the branching ratio for the decays ψ(3770) → J/ψπ^(+)π^(-) and γχ_j. These branching ratios together with the electronic widths of the ψ(3685) and ψ(3770) are used to determine the mixing angle between the 2^(3)S_1 and 1^(3)D_1 Charmonium states and are compared with a number of predictions. In addition, evidence is found for other non-DD hadronic final states, such as 3π, 4π, and 5π, as well as η2π, η4π, pp2π and pp3π.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapter I

Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.

Chapter II

A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.

EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.

EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.

Chapter III

A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetic and electronic processes in a Cu/CuCl double pulsed laser were investigated by measuring discharge and laser pulse characteristics, and by computer modeling. There are two time scales inherent to the operation of the Cu/CuCl laser. The first is during the interpulse afterglow (tens to hundreds of microseconds). The second is during the pumping pulse (tens of nanoseconds). It was found that the character of the pumping pulse is largely determined by the initial conditions provided by the interpulse afterglow. By tailoring the dissociation pulse to be long and low energy, and by conditioning the afterglow, one may select the desired initial conditions and thereby significantly improve laser performance. With a low energy dissociation pulse, the fraction of metastable copper obtained from a CuCl dissociation is low. By maintaining the afterglow, contributions to the metastable state from ion recombinations are prevented, and the plasma impedance remains low thereby increasing the rate of current rise during the pumping pulse. Computer models for the dissociation pulse, afterglow, pumping pulse and laser pulse reproduced experimentally observed behavior of laser pulse energy and power as a function of time delay, pumping pulse characteristics, and buffer gas pressure. The sensitivity of laser pulse properties on collisional processes (e.g., CuCl reassociation rates) was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical transport properties and lattice spacings of simple cubic Te-Au, Te-Au-Fe, and Te-Au-Mn alloys, prepared by rapid quenching from the liquid state, hove been measured and correlated with a proposed bond structure. The variations of superconducting transition temperature, absolute thermoelectric power, and lattice spacing with Te concentration all showed related anomalies in the binary Te-Au alloys. The unusual behavior of these properties has been interpreted by using nearly free electron theory to predict the effect of the second Brillouin zone boundary on the area of the Fermi surface, and the electronic density of states. The behavior of the superconducting transition temperature and the lattice parameter as Fe and Mn ore added further supports the proposed interpretation as well as providing information on the existence of localized magnetic states in the ternary alloys. In addition, it was found that a very distinct bond structure effect on the transition temperatures of the Te-Au-Fe alloys could be identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three novel metal (II) phthalocyanine complexes were synthesized by cyclic tetramerisation reaction of a dicyano benzene component and different metal ions (Pd2+, Co2+, Zn2+). The structure of complexes was confirmed by elemental analysis, mass and IR spectrum. The excellent solubility of the complexes in benzene enabled us to obtain films by a spin-coating method. The films were characterized by IR, electronic spectral and AFM. The gas sensing properties to NO2 of the metal (II) phthalocyanine complex films were studied. In addition, the effects of different metal ions and the gas sensing temperature on the sensing properties were studied. (C) 2005 Elsevier B.V. All rights reserved.