999 resultados para NONORTHOGONAL STATES
Resumo:
We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result may originate from typical properties of reduced subsystems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function of the size of the blocks and the system parameters.
Resumo:
Time-resolved DRIFTS, MS, and resistance measurements were used to study the interaction of undoped and Pd-doped SnO2 with H-2 in air and argon at 300 degrees C. Using first-order kinetics, we compare the time constants for the resistance drop and its partial recovery with those of the surface hydroxyl evolution and water formation in the gas phase upon exposure to hydrogen. In the case of the undoped oxide, resistance and bridging hydroxyls (BOHs) evolve similarly, manifesting a fast main drop followed by recovery at a similar rate. The rate of water formation for this material was found to be much slower than that of the main drop in both the resistance and BOHs. In contrast, the resistance change for SnO2-Pd appeared to be similar to that of water formation, and no correlation was found between the evolution of resistance and surface OHs. Isotopic exchange on both materials revealed that water formation occurs via fast and slow hydrogen transfer to surface oxygen species. While the former originates from just-adsorbed hydrogen, the latter appears to proceed from the preadsorbed OHs. Both surfaces exhibit close interaction between chemisorbed oxygen and existing bridging OH groups, indicating that the latter is an intermediate in the hydrogen oxidation and generation of donor states on the surface.
Resumo:
The solution of the time-dependent Schrodinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600397]
Resumo:
The information encoded in a quantum system is generally spoiled by the influences of its environment, leading to a transition from pure to mixed states. Reducing the mixedness of a state is a fundamental step in the quest for a feasible implementation of quantum technologies. Here we show that it is impossible to transfer part of such mixedness to a trash system without losing some of the initial information. Such loss is lower-bounded by a value determined by the properties of the initial state to purify. We discuss this interesting phenomenon and its consequences for general quantum information theory, linking it to the information theoretical primitive embodied by the quantum state-merging protocol and to the behaviour of general quantum correlations.
Resumo:
We report the experimental demonstration of two quantum networking protocols, namely quantum 1 -> 3 telecloning and open-destination teleportation, implemented using a four-qubit register whose state is encoded in a high-quality two-photon hyperentangled Dicke state. The state resource is characterized using criteria based on multipartite entanglement witnesses. We explore the characteristic entanglement-sharing structure of a Dicke state by implementing high-fidelity projections of the four-qubit resource onto lower-dimensional states. Our work demonstrates for the first time the usefulness of Dicke states for quantum information processing.
Resumo:
A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.
Resumo:
We address the presence of bound entanglement in strongly interacting spin systems at thermal equilibrium. In particular, we consider thermal graph states composed of an arbitrary number of particles. We show that for a certain range of temperatures no entanglement can be extracted by means of local operations and classical communication, even though the system is still entangled. This is found by harnessing the independence of the entanglement in some bipartitions of such states with the system's size. Specific examples for one- and two-dimensional systems are given. Our results thus prove the existence of thermal bound entanglement in an arbitrary large spin system with finite-range local interactions.
Resumo:
We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.