988 resultados para NMC batteries


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Battery energy storage systems have traditionally been manufactured using new batteries with a good reliability. The high cost of such a system has led to investigations of using second life transportation batteries to provide an alternative energy storage capability. However, the reliability and performance of these batteries is unclear and multi-modular power electronics with redundancy have been suggested as a means of helping with this issue. This paper reviews work already undertaken on battery failure rate to suggest suitable figures for use in reliability calculations. The paper then uses reliability analysis and a numerical example to investigate six different multi-modular topologies and suggests how the number of series battery strings and power electronic module redundancy should be determined for the lowest hardware cost using a numerical example. The results reveal that the cascaded dc-side modular with single inverter is the lowest cost solution for a range of battery failure rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing call for applications which use a mixture of batteries. These hybrid battery solutions may contain different battery types for example; using second life ex-transportation batteries in grid support applications or a combination of high power, low energy and low power, high energy batteries to meet multiple energy requirements or even the same battery types but under different states of health for example, being able to hot swap out a battery when it has failed in an application without changing all the batteries and ending up with batteries with different performances, capacities and impedances. These types of applications typically use multi-modular converters to allow hot swapping to take place without affecting the overall performance of the system. A key element of the control is how the different battery performance characteristics may be taken into account and the how the power is then shared among the different batteries in line with their performance. This paper proposes a control strategy which allows the power in the batteries to be effectively distributed even under capacity fade conditions using adaptive power sharing strategy. This strategy is then validated against a system of three different battery types connected to a multi-modular converter both with and without capacity fade mechanisms in place.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of ex-transportation battery system (i.e. second life EV/HEV batteries) in grid applications is an emerging field of study. A hybrid battery scheme offers a more practical approach in second life battery energy storage systems because battery modules could be from different sources/ vehicle manufacturers depending on the second life supply chain and have different characteristics e.g. voltage levels, maximum capacity and also different levels of degradations. Recent research studies have suggested a dc-side modular multilevel converter topology to integrate these hybrid batteries to a grid-tie inverter. Depending on the battery module characteristics, the dc-side modular converter can adopt different modes such as boost, buck or boost-buck to suitably transfer the power from battery to the grid. These modes have different switching techniques, control range, different efficiencies, which give a system designer choice on operational mode. This paper presents an analysis and comparative study of all the modes of the converter along with their switching performances in detail to understand the relative advantages and disadvantages of each mode to help to select the suitable converter mode. Detailed study of all the converter modes and thorough experimental results based on a multi-modular converter prototype based on hybrid batteries has been presented to validate the analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an emerging application which uses a mixture of batteries within an energy storage system. These hybrid battery solutions may contain different battery types. A DC-side cascaded boost converters along with a module based distributed power sharing strategy has been proposed to cope with variations in battery parameters such as, state-of-charge and/or capacity. This power sharing strategy distributes the total power among the different battery modules according to these battery parameters. Each module controller consists of an outer voltage loop with an inner current loop where the desired control reference for each control loop needs to be dynamically varied according to battery parameters to undertake this sharing. As a result, the designed control bandwidth or stability margin of each module control loop may vary in a wide range which can cause a stability problem within the cascaded converter. This paper reports such a unique issue and thoroughly investigates the stability of the modular converter under the distributed sharing scheme. The paper shows that a cascaded PI control loop approach cannot guarantee the system stability throughout the operating conditions. A detailed analysis of the stability issue and the limitations of the conventional approach are highlighted. Finally in-depth experimental results are presented to prove the stability issue using a modular hybrid battery energy storage system prototype under various operating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high cost of batteries has led to investigations in using second-life ex-transportation batteries for grid support applications. Vehicle manufacturers currently all have different specifications for battery chemistry, arrangement of cells, capacity and voltage. With anticipated new developments in battery chemistry which could also affect these parameters, there are, as yet, no standards defining parameters in second life applications. To overcome issues relating to sizing and to prevent future obsolescence for the rest of the energy storage system, a cascaded topology with an operating envelope design approach has been used to connect together modules. This topology offers advantages in terms of system reliability. The design methodology is validated through a set of experimental results resulting in the creation of surface maps looking at the operation of the converter (efficiency and inductor ripple current). The use of a pre-defined module operating envelope also offers advantages for developing new operational strategies for systems with both hybrid battery energy systems and also hybrid systems including other energy sources such as solar power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Convergence has been a popular theme in applied economics since the seminal papers of Barro (1991) and Barro and Sala-i-Martin (1992). The very notion of convergence quickly becomes problematic from an academic viewpoint however when we try and formalise a framework to think about these issues. In the light of the abundance of available convergence concepts, it would be useful to have a more universal framework that encompassed existing concepts as special cases. Moreover, much of the convergence literature has treated the issue as a zero-one outcome. We argue that it is more sensible and useful for policy decision makers and academic researchers to consider also ongoing convergence over time. Assessing the progress of ongoing convergence is one interesting and important means of evaluating whether the Eastern European New Member Countries (NMC) of the European Union (EU) are getting closer to being deemed “ready” to join the European Monetary Union (EMU), that is, fulfilling the Maastricht convergence criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric vehicles (EVs) provide a feasible solution to reducing greenhouse gas emissions and thus become a hot topic for research and development. Switched reluctance motors (SRMs) are one of promised motors for EV applications. In order to extend the EVs’ driving miles, the use of photovoltaic (PV) panels on the vehicle helps decrease the reliance on vehicle batteries. Based on phase winding characteristics of SRMs, a tri-port converter is proposed in this paper to control the energy flow between the PV panel, battery and SRM. Six operating modes are presented, four of which are developed for driving and two for standstill on-board charging. In the driving modes, the energy decoupling control for maximum power point tracking (MPPT) of the PV panel and speed control of the SRM are realized. In the standstill charging modes, a grid-connected charging topology is developed without a need for external hardware. When the PV panel directly charges the battery, a multi-section charging control strategy is used to optimize energy utilization. Simulation results based on Matlab/Simulink and experiments prove the effectiveness of the proposed tri-port converter, which has potential economic implications to improve the market acceptance of EVs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid EVs are the way forward for green transportation and for establishing low-carbon economy. This paper presents a split converter-fed four-phase switched reluctance motor (SRM) drive to realize flexible integrated charging functions (dc and ac sources). The machine is featured with a central-tapped winding node, eight stator slots, and six rotor poles (8/6). In the driving mode, the developed topology has the same characteristics as the traditional asymmetric bridge topology but better fault tolerance. The proposed system supports battery energy balance and on-board dc and ac charging. When connecting with an ac power grid, the proposed topology has a merit of the multilevel converter; the charging current control can be achieved by the improved hysteresis control. The energy flow between the two batteries is balanced by the hysteresis control based on their state-of-charge conditions. Simulation results in MATLAB/Simulink and experiments on a 150-W prototype SRM validate the effectiveness of the proposed technologies, which may provide a solution to EV charging issues associated with significant infrastructure requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the current age of fast-depleting conventional energy sources, top priority is given to exploring non-conventional energy sources, designing highly efficient energy storage systems and converting existing machines/instruments/devices into energy-efficient ones. ‘Energy efficiency’ is one of the important challenges for today’s scientific and research community, worldwide. In line with this demand, the current research was focused on developing two highly energy-efficient devices – field emitters and Li-ion batteries, using beneficial properties of carbon nanotubes (CNT). Interface-engineered, directly grown CNTs were used as cathode in field emitters, while similar structure was applied as anode in Li-ion batteries. Interface engineering was found to offer minimum resistance to electron flow and strong bonding with the substrate. Both field emitters and Li-ion battery anodes were benefitted from these advantages, demonstrating high energy efficiency. Field emitter, developed during this research, could be characterized by low turn-on field, high emission current, very high field enhancement factor and extremely good stability during long-run. Further, application of 3-dimensional design to these field emitters resulted in achieving one of the highest emission current densities reported so far. The 3-D field emitter registered 27 times increase in current density, as compared to their 2-D counterparts. These achievements were further followed by adding new functionalities, transparency and flexibility, to field emitters, keeping in view of current demand for flexible displays. A CNT-graphene hybrid structure showed appreciable emission, along with very good transparency and flexibility. Li-ion battery anodes, prepared using the interface-engineered CNTs, have offered 140% increment in capacity, as compared to conventional graphite anodes. Further, it has shown very good rate capability and an exceptional ‘zero capacity degradation’ during long cycle operation. Enhanced safety and charge transfer mechanism of this novel anode structure could be explained from structural characterization. In an attempt to progress further, CNTs were coated with ultrathin alumina by atomic layer deposition technique. These alumina-coated CNT anodes offered much higher capacity and an exceptional rate capability, with very low capacity degradation in higher current densities. These highly energy efficient CNT based anodes are expected to enhance capacities of future Li-ion batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prototype 3-dimensional (3D) anode, based on multiwall carbon nanotubes (MWCNTs), for Li-ion batteries (LIBs), with potential use in Electric Vehicles (EVs) was investigated. The unique 3D design of the anode allowed much higher areal mass density of MWCNTs as active materials, resulting in more amount of Li+ ion intake, compared to that of a conventional 2D counterpart. Furthermore, 3D amorphous Si/MWCNTs hybrid structure offered enhancement in electrochemical response (specific capacity 549 mAhg–1 ). Also, an anode stack was fabricated to further increase the areal or volumetric mass density of MWCNTs. An areal mass density of the anode stack 34.9 mg/cm2 was attained, which is 1,342% higher than the value for a single layer 2.6 mg/cm2. Furthermore, the binder-assisted and hot-pressed anode stack yielded the average reversible, stable gravimetric and volumetric specific capacities of 213 mAhg–1 and 265 mAh/cm3, respectively (at 0.5C). Moreover, a large-scale patterned novel flexible 3D MWCNTs-graphene-polyethylene terephthalate (PET) anode structure was prepared. It generated a reversible specific capacity of 153 mAhg–1 at 0.17C and cycling stability of 130 mAhg –1 up to 50 cycles at 1.7C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon due to their intriguing mechanical, electrical, thermal and optical properties. The synthesis and electron emission properties of CNT arrays have been investigated in this work. Vertically aligned CNTs of different densities were synthesized on copper substrate with catalyst dots patterned by nanosphere lithography. The CNTs synthesized with catalyst dots patterned by spheres of 500 nm diameter exhibited the best electron emission properties with the lowest turn-on/threshold electric fields and the highest field enhancement factor. Furthermore, CNTs were treated with NH3 plasma for various durations and the optimum enhancement was obtained for a plasma treatment of 1.0 min. CNT point emitters were also synthesized on a flat-tip or a sharp-tip to understand the effect of emitter geometry on the electron emission. The experimental results show that electron emission can be enhanced by decreasing the screening effect of the electric field by neighboring CNTs. In another part of the dissertation, vertically aligned CNTs were synthesized on stainless steel (SS) substrates with and without chemical etching or catalyst deposition. The density and length of CNTs were determined by synthesis time. For a prolonged growth time, the catalyst activity terminated and the plasma started etching CNTs destructively. CNTs with uniform diameter and length were synthesized on SS substrates subjected to chemical etching for a period of 40 minutes before the growth. The direct contact of CNTs with stainless steel allowed for the better field emission performance of CNTs synthesized on pristine SS as compared to the CNTs synthesized on Ni/Cr coated SS. Finally, fabrication of large arrays of free-standing vertically aligned CNT/SnO2 core-shell structures was explored by using a simple wet-chemical route. The structure of the SnO2 nanoparticles was studied by X-ray diffraction and electron microscopy. Transmission electron microscopy reveals that a uniform layer of SnO2 is conformally coated on every tapered CNT. The strong adhesion of CNTs with SS guaranteed the formation of the core-shell structures of CNTs with SnO2 or other metal oxides, which are expected to have applications in chemical sensors and lithium ion batteries.