945 resultados para NEUTRON EMISSION
Resumo:
Magmatic rocks of the Shatsky Rise form two groups replacing one another in time. The earlier ferrotholeiites enriched in potassium compose large massifs. Trachybasalts form seamounts and neotectonic ridges. Composition of volcanites indicates that two sources of magmatism took part in their formation: a depleted source characteristic of basalts of mid-ocean ridges and a ''plume'' source participating in formation of oceanic plateaus.
Resumo:
The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.
Resumo:
Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. Our simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform-producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.
Resumo:
Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg/yr. On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).
Resumo:
Chemical and isotopic data for rare massive and semimassive sulfide samples cored at Site 1189 (Roman Ruins, PACMANUS) suggest their genetic relationship with sulfide chimneys at the seafloor. Sand collected from the hammer drill after commencement of Hole 1189B indicates that at least the lower section of the cased interval was occupied by material similar to the stockwork zone cored from 31 to ~100 meters below seafloor (mbsf) in this hole, but with increased content of barite, sphalerite, and lead-bearing minerals. Fractional crystallization of ascending hydrothermal fluid involving early precipitation of pyrite may explain vertical mineralogical and chemical zoning within the stockwork conduit and the high base and precious metal contents of Roman Ruins chimneys. A mineralized volcaniclastic unit cored deep in Hole 1189A possibly represents the lateral fringe of the conduit system. Lead isotope ratios in the sulfides differ slightly but significantly from those of fresh lavas from Pual Ridge, implying that at least some of the Pb within the Roman Ruins hydrothermal system derived from a deeper, more radiogenic source than the enclosing altered volcanic rocks.
Resumo:
Legs 106-109 achieved the first basaltic bare-rock drill hole, on a small volcano (Serocki volcano) located on the flanks of the rift valley in the MAR about 70 km south of the Kane fracture zone. Because of severe technical difficulties only 50.5 m of basalt below seafloor was recovered. Geochemical analysis shows that the recovered basalts display typical N-MORB characteristics as expected in this segment of the Mid-Atlantic ridge. The lava flows display rather equivalent geochemical characteristics all over the drilled section and show the imprint of a previous magmatic differentiation suffered by the magmas before their emission, indicative of a fractional crystallization of plagioclase-bearing cumulates. The incompatible and alkali element content of these 648B magmas is very low, a feature which resembles those of other N-MORB. The geochemical characteristics of these basalts look closely similar to those of basalts from the same flow line emitted respectively 10 m.y. (Hole 395, Legs 45-46), and 110 m.y. (Hole 417A, Legs 51-53) ago, supporting the persistence in this ridge segment of a mantle source with depleted characteristics over the last 110 m.y., but with some variations in the degree of depletion of the source along this period. Although these rocks appear fresh, the imprint of an incipient low temperature alteration can be noticed in a few samples, as evidenced by slight increases of alkali, U elements, and 87Sr/86Sr isotopic compositions.
Resumo:
Pore waters were analyzed from 6 holes drilled from M.V. "Eureka" as a part of the Shell Oil Co. deeper offshore study. The holes were drilled in water depths of 600-3000 ft. (approximately 180-550 m) and penetrated up to 1000 ft. (300 m) of Pliocene-Recent clayey sediments. Salt and anhydrite caprock was encountered in one diapiric structure on the continental slope. Samples from holes drilled near diapiric structures showed systematic increases of pore-water salinity with depth, suggestive of salt diffusion from underlying salt plugs. Anomalous concentrations of K and Br indicate that at least one plug contains late-stage evaporite minerals. Salinities approaching halite saturation were observed. Samples from holes away from diapiric structures showed little change in pore-water chemistry, except for loss of SO4 and other variations attributable to early-stage diagenetic reactions with enclosing sediments. Thus, increased salt concentrations in even shallow sediments from this part of the Gulf appear to provide an indicator of salt masses at depth.
Resumo:
The book deals with results of complex geological and geophysical studies in the Doldrums and Arkhangelsky Fracture Zones of the Central Atlantic. Description of the main features of bottom relief, sediments and crustal structure, geomagnetic field, composition of igneous and sedimentary rocks are given in the book. The authors made conclusions on tectonic delamination of the oceanic crust and existence of specific rock complexes forming non-spreading blocks