953 resultados para N-15-nmr Chemical-shifts
Resumo:
Soft corals of the family Xeniidae are particularly abundant in Red Sea coral reefs. Their success may be partly due to a strong defense mechanism against fish predation. To test this, we conducted field and aquarium experiments in which we assessed the antifeeding effect of secondary metabolites of 2 common xeniid species, Ovabunda crenata and Heteroxenia ghardaqensis. In the field experiment, the metabolites of both investigated species reduced feeding on experimental food pellets in the natural population of Red Sea reef fishes by 86 and 92% for O. crenata and H. ghardaqensis, respectively. In the aquarium experiment, natural concentration of crude extract reduced feeding on experimental food pellets in the common reef fish Thalassoma lunare (moon wrasse) by 83 and 85%, respectively. Moon wrasse feeding was even reduced at extract concentrations as low as 12.5% of the natural concentration in living soft coral tissues. To assess the potential of a structural anti-feeding defence, sclerites of O. crenata were extracted and mixed into food pellets at natural, doubled and reduced concentration without and in combination with crude extract at 25% of natural concentration, and tested in an aquarium experiment. The sclerites did not show any effect on the feeding behavior of the moon wrasse indicating that sclerites provide structural support rather than antifeeding defense. H. ghardaqensis lacks sclerites. We conclude that the conspicuous abundance of xeniid soft coral species in the Red Sea is likely a consequence of a strong chemical defence, rather than physical defences, against potential predators.
Resumo:
In sediments of the Laptev Sea unknown earlier ferromanganese manifestations have been found. On the basis of structural-textural external signs they have been divided to five groups: 1) tube- and spindle-shaped pseudomorphs after and within invertebrates; 2) nuclear and non-nuclear nodules; 3) flagellum- and tube-like skeletons of polychaetes; 4) flat and flattened crustate nodules and crusts; 5) micronodules. All types of ferromanganese manifestations have been sorted in three main genetic series: eigenferrous formations of autochthonous (polychaetes, goethite micronodules) and allochthonous (nuclear nodules) nature; ferromanganese nodules formed under mild hydro-geodynamic conditions at the sediment-seawater geochemical barrier; and ferromanganese manifestations formed under conditions of the variable physico-chemical environment. Ferromanganese manifestations of allochthonous type have signs of littoral zones. They contain both ferrous and ferric iron and have low oxidation degree of manganese in comparison with the autochthonous type manifestations. Manganese minerals with moderate oxidation degree are represented by vernadite and buserite. Such features of iron and manganese indicate different conditions of their formation and occurrence. The main distinctive feature of ferromanganese mineralisation in the Laptev Sea is the redox barrier: the oxidized water layer enriched in oxygen and reduced sediments. This barrier provides favorable conditions for bacterial formation of ferromanganese ores. Understanding of the genesis of ferromanganese manifestations should be found in a study of organic matter reworking by bacteria.
Resumo:
The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program (IODP) storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4°C for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at -80°C. Storage at 4°C does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a 3-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below sea floor sediment samples, reverse transcribed to complementary DNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron, and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations.
Resumo:
Concentrations of major-, trace- and rare earth elements in recent and Old Black Sea bottom sediments are reported in the paper. Data presented suggest that accumulation of black shale deposits was not constrained to a certain time span but proceeds in certain modern basins and generates sediments with metal contents close to those in their ancients analogues in hydrogen sulfide contaminated environments. If REE are involved in the process, their composition can vary depending on such factors as variations in redox conditions and occurrence of phosphate and barite nodules, which can induce development of either positive or negative Eu anomalies.
Resumo:
The volume presents planktological and chemical data collected during cruise No. 51 of RV "Meteor" to the equatorial Atlantic (FGGE '79) from February to June 1979. A standard section along the meridian 22° W across the equator was sampled ten times between 2° S and 3° N. Together with a temperature and salinity profile, concentrations of oxygen, nutrients and chlorophyll a were analyzed in water samples down to a depth of 250 m. Solar radiation and light depths were measured for determination of primary productivity of the euphotic zone according to the simulated in situ method. Zooplankton biomass was estimated in 5 depth intervals down to 300 m by means of a multiple opening and closing net equipped with a mesh size of 100 µm.