965 resultados para Musculoskeletal system
Resumo:
CAAS is a rule-based expert system, which provides advice on the Victorial Credit Act 1984. It is currently in commercial use, and has been developed in conjunction with a law firm. It uses an object-oriented hybrid reasoning approach. The system was initially prototyped using the expert system shell NExpert Object, and was then converted into the C++ language. In this paper we describe the advantages that this methodology has, for both commercial and research development.
Resumo:
This study examined how a knowledge management system can bring innovative behaviour to a knowledge based firm. The study developed a framework for such a system by investigating what components should comprise the system and how they should interact. The outcome of the study is a recommended framework of components, tools & methods to effectively implement a knowledge management system.
Resumo:
Introduction Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system. Methods All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup. Results The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %. Discussion and conclusions The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.
Resumo:
This research has developed an innovative road safety barrier system that will enhance roadside safety. In doing so, the research developed new knowledge in the field of road crash mitigation for high speed vehicle impact involving plastic road safety barriers. This road safety barrier system has the required feature to redirecting an errant vehicle with limited lateral displacement. Research was carried out using dynamic computer simulation technique support by experimental testing. Future road safety barrier designers may use the information in this research as a design guideline to improve the performance and redirectional capability of the road safety barrier system. This will lead to better safety conditions on the roadways and potentially save lives.
Resumo:
The purpose of this study was to evaluate the validity and inter-rater reliability of the Observation System for Recording Activity in Children: Youth Sports (OSRAC:YS). Children (N=29) participating in a parks and recreation soccer program were observed during regularly scheduled practices. Physical activity (PA) intensity and contextual factors were recorded by momentary time-sampling procedures (10-sec observe, 20-sec record). Two observers simultaneously observed and recorded children's PA intensity, practice context, social context, coach behavior, and coach proximity. Inter-rater reliability was based on agreement (Kappa) between the observer's coding for each category, and the Intraclass Correlation Coefficient (ICC) for percent of time spent in MVPA. Validity was assessed by calculating the correlation between OSRAC:YS estimated and objectively measured MVPA. Kappa statistics for each category demonstrated substantial to almost perfect inter-observer agreement (Κappa = 0.67 to 0.93). The ICC for percent time in MVPA was 0.76 (95% C.I. = 0.49 - 0.90). A significant correlation (r = 0.73) was observed for MVPA recorded by observation and MVPA measured via accelerometry. The results indicate the OSRAC:YS is a reliable and valid tool for measuring children's PA and contextual factors during a youth soccer practice.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that are used to prevent errant vehicles from penetrating into temporary construction zones on roadways. A numerical model of the composite PWFB, consisting of a plastic shell, steel frame, water and foam was developed and validated against results from full scale experimental tests. This model can be extended to larger scale impact cases, specifically ones that include actual vehicle models. The cost-benefit of having a validated numerical model is significant and this allows the road barrier designer to conduct extensive tests via numerical simulations prior to standard impact tests Effects of foam cladding as additional energy absorption material in the PWFB was investigated. Different types of foam were treated and it was found that XPS foam was the most suitable foam type. Results from this study will aid PWFB designers in developing new generation of roadside structures which will provide enhanced road safety.
Resumo:
This study investigated the relative contribution of individual, workplace, psychosocial and physiological features associated with neck pain in female office workers towards developing appropriate intervention programs. Workers without disability (Neck Disability Index (NDI) score≤8, n=33); workers with neck pain and disability (NDI≥9/100, n=52) and 22 controls (women who did not work and without neck pain) participated in this study. Two logistic regression models were constructed to test the association between various measures in (1) workers with and without disability, and (2) workers without disability and controls. Measures included those found to be significantly associated with higher NDI in our previous studies: psychosocial domains; individual factors; task demands; quantitative sensory measures and measures of motor function. In the final model, higher score on negative affectivity scale (OR=4.47), greater activity in the neck flexors during cranio-cervical flexion (OR=1.44), cold hyperalgesia (OR=1.27) and longer duration of symptoms (OR=1.19) remained significantly associated with neck pain in workers. Workers without disability and controls could only be differentiated by greater muscle activity in the cervical flexors and extensors during a typing task. No psychosocial domains remained in either regression model. These results suggest that impairments in the sensory and motor system should be considered in any assessment of the office worker with neck pain and may have stronger influences on the presenting symptoms than workplace and psychosocial features.
Resumo:
Typical inductive power transfer (IPT) systems employ two power conversion stages to generate a high-frequency primary current from low-frequency utility supply. This paper proposes a matrix-converter-based IPT system, which employs high-speed SiC devices to facilitate the generation of high-frequency current through a single power conversion stage. The proposed matrix converter topology transforms a three-phase low-frequency voltage system to a high-frequency single-phase voltage, which, in turn, powers a series compensated IPT system. A comprehensive mathematical model is developed and power losses are evaluated to investigate the efficiency of the proposed converter topology. Theoretical results are presented with simulations, which are performed in MATLAB/Simulink, in comparison to a conventional two-stage converter. Experimental evident of a prototype IPT system is also presented to demonstrate the applicability of the proposed concept.
Resumo:
We have investigated the gelatinase profiles and invasiveness of clonal tumour sublines derived from a spontaneously arising mammary tumour in a Balb/cfC3H mouse. The 67NR, 66c14 and 4T1.2 sublines have low, intermediate and high metastatic potential respectively. In Boyden chamber studies, Matrigel invasion was seen to be progressively higher in the more metastatic lines 4T1.2>66c14>67NR, consistent with MMP-2 activation potential, MMP-9 secretion, and migration over either type I or IV collagen, which were low in both 67NR and 66c14 cells compared to 4T1.2 cells. These attributes are consistent with those seen in human breast cancer cell lines which appear to have undergone an epithelial-mesenchymal transition (EMT) as indicated by vimentin expression. We were, however, surprised to find vimentin expression, MT1-MMP expression and stellate Matrigel outgrowth in the non-invasive, non-metastatic 67NR cells, indicating that they had undergone an EMT despite not being invasive. We conclude that the EMT is manifested to differing degrees in these three clonal cell lines, and that the 67NR cells have either undergone a partial EMT or have since lost certain important attributes of the EMT-derived phenotype. This model should prove useful in further characterizing the regulation of MT1-MMP mediated MMP-2 activation and delineating the EMT in breast cancer progression.
Resumo:
Introduction The benefits of physical activity are established and numerous; not the least of which is reduced risk of negative cardiovascular events. While sedentary lifestyles are having negative impacts across populations, people with musculoskeletal disorders may face additional challenges to becoming physically active. Unfortunately, interventions in ambulatory hospital clinics for people with musculoskeletal disorders primarily focus on their presenting musculoskeletal complaint with cursory attention given to lifestyle risk factors; including physical inactivity. This missed opportunity is likely to have both personal costs for patients and economic costs for downstream healthcare funders. Objectives The objective of this study was to investigate the presence of obesity, diabetes, diagnosed cardiac conditions, and previous stroke (CVA) among insufficiently physically active patients accessing (non-surgical) ambulatory hospital clinics for musculoskeletal disorders to indicate whether a targeted risk-reducing intervention is warranted. Methods A sub-group analysis of patients (n=110) who self-reported undertaking insufficient physical activity level to meet national (Australian) minimum recommended guidelines was conducted. Responses to the Active Australia Survey were used to identify insufficiently active patients from a larger cohort study being undertaken across three (non-surgical) ambulatory hospital clinics for musculoskeletal disorders. Outcomes of interest included body mass index, Type-II diabetes, diagnosed cardiac conditions, previous CVA and patients’ current health-related quality of life (Euroqol-5D). Results The mean (standard deviation) age of inactive patients was 56 (14) years. Body mass index values indicated that n=80 (73%) were overweight n=26 (24%), or obese n=45 (49%). In addition to their presenting condition, a substantial number of patients reported comorbid diabetes n=23 (21%), hypertension n=25 (23%) or an existing heart condition n=14 (13%); 4 (3%) had previously experienced a CVA as well as other comorbid conditions. Health-related quality of life was also substantially impacted, with a mean (standard deviation) multi-attribute utility score of 0.51 (0.32). Conclusion A range of health conditions and risk factors for further negative health events, including cardiovascular complications, consistent with physically inactive lifestyles were evident. A targeted risk-reducing intervention is warranted for this high risk clinical group.
Resumo:
Relevation! is a system for performing relevance judgements for information retrieval evaluation. Relevation! is web-based, fully configurable and expandable; it allows researchers to effectively collect assessments and additional qualitative data. The system is easily deployed allowing assessors to smoothly perform their relevance judging tasks, even remotely. Relevation! is available as an open source project at: http://ielab.github.io/relevation.
Resumo:
A statistical approach is used in the design of a battery-supercapacitor energy storage system for a wind farm. The design exploits the technical merits of the two energy storage mediums, in terms of the differences in their specific power and energy densities, and their ability to accommodate different rates of change in the charging/discharging powers. By treating the input wind power as random and using a proposed coordinated power flows control strategy for the battery and the supercapacitor, the approach evaluates the energy storage capacities, the corresponding expected life cycle cost/year of the storage mediums, and the expected cost/year of unmet power dispatch. A computational procedure is then developed for the design of a least-cost/year hybrid energy storage system to realize wind power dispatch at a specified confidence level.
Resumo:
A robust and reliable grid power interface system for wind turbines using a permanent-magnet synchronous generator (PMSG) is proposed in this paper, where an integration of a generator-side three-switch buck-type rectifier and a grid-side Z-source inverter is employed as a bridge between the generator and the grid. The modulation strategy for the proposed topology is developed from space-vector modulation and Z-source network operation principles. Two PMSG control methods, namely, unity-power-factor control and rotor-flux-orientation control (Id = 0), are studied to establish an optimized control scheme for the generator-side three-switch buck-type rectifier. The system control scheme decouples active- and reactive-power control through voltage-oriented control and optimizes PMSG control for the grid- and generator-side converters independently. Maximum power point tracking is implemented by adjusting the shoot-through duty cycles of the Z-source network. The design considerations of the passive components are also provided. The performances and practicalities of the designed architecture have been verified by simulations and experiments.
Resumo:
Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time. The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using Matlab/Simulink/PLECS and subsequently it is experimentally validated using a laboratory prototype.