999 resultados para Multisoliton states
Resumo:
The solution of the time-dependent Schrodinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600397]
Resumo:
The information encoded in a quantum system is generally spoiled by the influences of its environment, leading to a transition from pure to mixed states. Reducing the mixedness of a state is a fundamental step in the quest for a feasible implementation of quantum technologies. Here we show that it is impossible to transfer part of such mixedness to a trash system without losing some of the initial information. Such loss is lower-bounded by a value determined by the properties of the initial state to purify. We discuss this interesting phenomenon and its consequences for general quantum information theory, linking it to the information theoretical primitive embodied by the quantum state-merging protocol and to the behaviour of general quantum correlations.
Resumo:
We report the experimental demonstration of two quantum networking protocols, namely quantum 1 -> 3 telecloning and open-destination teleportation, implemented using a four-qubit register whose state is encoded in a high-quality two-photon hyperentangled Dicke state. The state resource is characterized using criteria based on multipartite entanglement witnesses. We explore the characteristic entanglement-sharing structure of a Dicke state by implementing high-fidelity projections of the four-qubit resource onto lower-dimensional states. Our work demonstrates for the first time the usefulness of Dicke states for quantum information processing.
Resumo:
A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.
Resumo:
We address the presence of bound entanglement in strongly interacting spin systems at thermal equilibrium. In particular, we consider thermal graph states composed of an arbitrary number of particles. We show that for a certain range of temperatures no entanglement can be extracted by means of local operations and classical communication, even though the system is still entangled. This is found by harnessing the independence of the entanglement in some bipartitions of such states with the system's size. Specific examples for one- and two-dimensional systems are given. Our results thus prove the existence of thermal bound entanglement in an arbitrary large spin system with finite-range local interactions.
Resumo:
We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.
Resumo:
These notes originated out of a set of lectures in Quantum Optics and Quantum Information given by one of us (MGAP) at the University of Napoli and the University of Milano. A quite broad set of issues are covered, ranging from elementary concepts to current research topics, and from fundamental concepts to applications. A special emphasis has been given to the phase space analysis of quantum dynamics and to the role of Gaussian states in continuous variable quantum information.
Resumo:
The objectives of this study are to produce up-to-date estimates of race/ethnic/nativity differentials for remarriage and repartnership among women in the United States and to see if these differences are due to across-group differences in demographic characteristics. First, we produce lifetable estimates of remarriage and repartnering for white, black, U.S. born Latina and foreign born Latina women. Next, we estimate race/ethnic/nativity differentials for remarriage and repartnership using event-history analysis with and without controls for demographic characteristics. The results suggest a continued overall decline in remarriage rates, while many women repartner by cohabitating. Whites are more likely than blacks or Latinas to remarry and they are also more likely to repartner. Race/ethnic/nativity differentials remain even after accounting for variations in demographic characteristics. This suggests that race/ethnic/nativity differentials in remarriage and repartnering rates, rather than ameliorating disadvantages associated with divorce, reinforce these differentials.