907 resultados para Motor control coordination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia patients are severely impaired in nonverbal communication, including social perception and gesture production. However, the impact of nonverbal social perception on gestural behavior remains unknown, as is the contribution of negative symptoms, working memory, and abnormal motor behavior. Thus, the study tested whether poor nonverbal social perception was related to impaired gesture performance, gestural knowledge, or motor abnormalities. Forty-six patients with schizophrenia (80%), schizophreniform (15%), or schizoaffective disorder (5%) and 44 healthy controls matched for age, gender, and education were included. Participants completed 4 tasks on nonverbal communication including nonverbal social perception, gesture performance, gesture recognition, and tool use. In addition, they underwent comprehensive clinical and motor assessments. Patients presented impaired nonverbal communication in all tasks compared with controls. Furthermore, in contrast to controls, performance in patients was highly correlated between tasks, not explained by supramodal cognitive deficits such as working memory. Schizophrenia patients with impaired gesture performance also demonstrated poor nonverbal social perception, gestural knowledge, and tool use. Importantly, motor/frontal abnormalities negatively mediated the strong association between nonverbal social perception and gesture performance. The factors negative symptoms and antipsychotic dosage were unrelated to the nonverbal tasks. The study confirmed a generalized nonverbal communication deficit in schizophrenia. Specifically, the findings suggested that nonverbal social perception in schizophrenia has a relevant impact on gestural impairment beyond the negative influence of motor/frontal abnormalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke is one of the most common conditions requiring rehabilitation, and its motor impairments are a major cause of permanent disability. Hemiparesis is observed by 80% of the patients after acute stroke. Neuroimaging studies showed that real and imagined movements have similarities regarding brain activation, supplying evidence that those similarities are based on the same process. Within this context, the combination of MP with physical and occupational therapy appears to be a natural complement based on neurorehabilitation concepts. Our study seeks to investigate if MP for stroke rehabilitation of upper limbs is an effective adjunct therapy. PubMed (Medline), ISI knowledge (Institute for Scientific Information) and SciELO (Scientific Electronic Library) were terminated on 20 February 2015. Data were collected on variables as follows: sample size, type of supervision, configuration of mental practice, setting the physical practice (intensity, number of sets and repetitions, duration of contractions, rest interval between sets, weekly and total duration), measures of sensorimotor deficits used in the main studies and significant results. Random effects models were used that take into account the variance within and between studies. Seven articles were selected. As there was no statistically significant difference between the two groups (MP vs Control), showed a – 0.6 (95% CI: –1.27 to 0.04), for upper limb motor restoration after stroke. The present meta-analysis concluded that MP is not effective as adjunct therapeutic strategy for upper limb motor restoration after stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control is attention regulation. Because higher levels of state anxiety are associated with impaired attention regulation, we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. In line with our expectations, depleted participants in the high-anxiety condition performed worse and displayed a shorter final fixation on bull's eye, demonstrating that when one's self-control strength is depleted, attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present article, we argue that it may be fruitful to incorporate the ideas of the strength model of self-control into the core assumptions of the well-established attentional control theory (ACT). In ACT, it is assumed that anxiety automatically leads to attention disruption and increased distractibility, which may impair subsequent cognitive or perceptual-motor performance, but only if individuals do not have the ability to counteract this attention disruption. However, ACT does not clarify which process determines whether one can volitionally regulate attention despite experiencing high levels of anxiety. In terms of the strength model of self-control, attention regulation can be viewed as a self-control act depending on the momentary availability of self-control strength. We review literature that has revealed that self-control strength moderates the anxiety-performance relationship, discuss how to integrate these two theoretical models, and offer practical recommendations of how to counteract negative anxiety effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants’ dart throwing performance and accompanying gaze behavior. According to the strength model of self-control the most important aspect of self-control is attention regulation (Schmeichel & Baumeister, 2010). As higher levels of state anxiety are associated with impaired attention regulation (Nieuwenhuys & Oudejans, 2012) we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. A total of 28 right-handed students participated in our study (Mage = 23.4, SDage = 2.5; 10 female; no professional dart experience). Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. The task was performed while participants were positioned high and low on a climbing wall (i.e., with high and low levels of anxiety). In line with our expectations, a mixed-design ANOVA revealed that depleted participants in the high anxiety condition performed worse (p < .001) and displayed a shorter final fixation on bull’s eye (p < .01) than in the low anxiety condition, demonstrating that when one is depleted attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cerebellum is the major brain structure that contributes to our ability to improve movements through learning and experience. We have combined computer simulations with behavioral and lesion studies to investigate how modification of synaptic strength at two different sites within the cerebellum contributes to a simple form of motor learning—Pavlovian conditioning of the eyelid response. These studies are based on the wealth of knowledge about the intrinsic circuitry and physiology of the cerebellum and the straightforward manner in which this circuitry is engaged during eyelid conditioning. Thus, our simulations are constrained by the well-characterized synaptic organization of the cerebellum and further, the activity of cerebellar inputs during simulated eyelid conditioning is based on existing recording data. These simulations have allowed us to make two important predictions regarding the mechanisms underlying cerebellar function, which we have tested and confirmed with behavioral studies. The first prediction describes the mechanisms by which one of the sites of synaptic modification, the granule to Purkinje cell synapses (gr → Pkj) of the cerebellar cortex, could generate two time-dependent properties of eyelid conditioning—response timing and the ISI function. An empirical test of this prediction using small, electrolytic lesions of the cerebellar cortex revealed the pattern of results predicted by the simulations. The second prediction made by the simulations is that modification of synaptic strength at the other site of plasticity, the mossy fiber to deep nuclei synapses (mf → nuc), is under the control of Purkinje cell activity. The analysis predicts that this property should confer mf → nuc synapses with resistance to extinction. Thus, while extinction processes erase plasticity at the first site, residual plasticity at mf → nuc synapses remains. The residual plasticity at the mf → nuc site confers the cerebellum with the capability for rapid relearning long after the learned behavior has been extinguished. We confirmed this prediction using a lesion technique that reversibly disconnected the cerebellar cortex at various stages during extinction and reacquisition of eyelid responses. The results of these studies represent significant progress toward a complete understanding of how the cerebellum contributes to motor learning. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The respiratory central pattern generator is a collection of medullary neurons that generates the rhythm of respiration. The respiratory central pattern generator feeds phrenic motor neurons, which, in turn, drive the main muscle of respiration, the diaphragm. The purpose of this thesis is to understand the neural control of respiration through mathematical models of the respiratory central pattern generator and phrenic motor neurons. ^ We first designed and validated a Hodgkin-Huxley type model that mimics the behavior of phrenic motor neurons under a wide range of electrical and pharmacological perturbations. This model was constrained physiological data from the literature. Next, we designed and validated a model of the respiratory central pattern generator by connecting four Hodgkin-Huxley type models of medullary respiratory neurons in a mutually inhibitory network. This network was in turn driven by a simple model of an endogenously bursting neuron, which acted as the pacemaker for the respiratory central pattern generator. Finally, the respiratory central pattern generator and phrenic motor neuron models were connected and their interactions studied. ^ Our study of the models has provided a number of insights into the behavior of the respiratory central pattern generator and phrenic motor neurons. These include the suggestion of a role for the T-type and N-type calcium channels during single spikes and repetitive firing in phrenic motor neurons, as well as a better understanding of network properties underlying respiratory rhythm generation. We also utilized an existing model of lung mechanics to study the interactions between the respiratory central pattern generator and ventilation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work examines the relationship between pH-induced changes in growth and stable isotopic composition of coccolith calcite in two coccolithophore species with a geological perspective. These cells (Gephyrocapsa oceanica and Coccolithus pelagicus) with differing physiologies and vital effects possess a growth optimum corresponding to average pH of surface seawater in the geological period during their first known occurrence. Diminished growth rates outside of their optimum pH range are explained by the challenge of proton translocation into the extracellular environment at low pH, and enhanced aqueous CO2 limitation at high pH. These diminished growth rates correspond to a lower degree of oxygen isotopic disequilibrium in G. oceanica. In contrast, the slower growing and ancient species C. pelagicus, which typically precipitates near-equilibrium calcite, does not show any modulation of oxygen isotope signals with changing pH. In CO2-utilizing unicellular algae, carbon and oxygen isotope compositions are best explained by the degree of utilization of the internal dissolved inorganic carbon (DIC) pool and the dynamics of isotopic re-equilibration inside the cell. Thus, the "carbonate ion effect" may not apply to coccolithophores. This difference with foraminifera can be traced to different modes of DIC incorporation into these two distinct biomineralizing organisms. From a geological perspective, these findings have implications for refining the use of oxygen isotopes to infer more reliable sea surface temperatures (SSTs) from fossil carbonates, and contribute to a better understanding of how climate-relevant parameters are recorded in the sedimentary archive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000 µatm), following 6 months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000 µatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750 µatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the performance of an instantaneous torque control method. The simulation and experimental results illustrate the capability of Switched Reluctance Motors (SRM) being used in the motor drive industry. Based on experimental data, the advantages of this control method and its disadvantages in practical implementation were studied. The model used in the simulation is the linear magnetic model which has the 12/8 structure, the same structure as the experimental switched reluctance motor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past years, the industry has shifted position and moved towards “the luxury universe” whose customers are demanding, treating individuals as unique and valued customer for the business, offering vehicles produced with the state of the art technologies and implementing the highest finishing standards. Due to the competitive level in the market, motor makers enable processes which equalizes customer services to E.R. management, being dealt with the maximum urgency that allows the comparison between both, car workshops and emergency rooms, where workshop bays or ramps will be equal to emergency boxes and skilled technicians are equivalent to the health care specialist, who will carry out tests and checks prior to afford any final operation, keeping the “patient” under control before it is back to normal utilization. This paper ratify a valid model for the automotive industry to estimate customer service demand forecasting under variable demand conditions using analogies with patient demand models used for the medical ER

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este proyecto nace de la necesidad de automatizar el estudio de sistemas hidráulicos y de control de roturas en presas. Para realizar el estudio de sistemas hidráulicos se usarán un número indeterminado de sensores de nivel, presión y caudal. El número de sensores que se pueden utilizar viene determinado por el material disponible. Estos sensores se conectarán a unas tarjetas de National Instruments modelo NI 9208 y éstas a su vez a un chasis modelo CompactDAQ NI-9174 con cuatro ranuras. Conectando este chasis al ordenador podremos obtener los datos provenientes de los sensores. También se podrá controlar una válvula para determinar la cantidad de agua que fluye en nuestro experimento. Está válvula está conectada a una tarjeta NI-9264 que se conectará al chasis en su última posición Para detectar y estudiar posibles roturas en presas se dispone de un motor y un láser con los cuales se puede barrer la superficie de una presa y obtener una imagen en tres dimensiones de la misma procesando los datos provenientes del laser. Para recoger los datos de los sensores y controlar una válvula se ha desarrollado una aplicación utilizando LabVIEW, un programa creado por National Instruments. Para poder controlar el motor y el láser se parte de una aplicación que ya estaba realizada en LabVIEW. El objetivo ha sido detectar y corregir una serie de errores en la misma. Dentro del proyecto, además de la explicación detallada de la aplicación para los sensores y la válvula, y las pruebas realizadas para detectar y corregir los errores de la aplicación del láser y el motor, existe: una breve introducción a la programación en LabVIEW, la descripción de los pasos realizados para el conexionado de los sensores con las tarjetas, los manuales de usuario de las aplicaciones y la descripción de los equipos utilizados. This project stars from the need to automate the study of hydraulic systems and control dam breaks. For the study of hydraulic systems it will be used an unspecified number of level, pressure and flow sensors. The number of sensors that can be used is determined by the available material. These sensors are connected to a NI 9208 National Instruments target and these cards to a NI-9174 CompactDAQ chassis with four slots. Connecting the chassis to a computer we will obtain data from the sensors. We also can control a valve to determine the amount of water flowing in our experiment. This valve is connected to a NI-9264 card and this card to the last position of the chassis. To detect and study dams breakage it used a motor and a laser. With these two devices we can scan the surface of a dam and obtain a three-dimensional image processing data from the laser. To collect data from the sensors and control the valve it has developed an application using LabVIEW, a program created by National Instruments. To control the motor and the laser it is used an application that was already created using LabVIEW. The aim of this part has been detect and correct a number of errors in this application. Within the project, in addition to the detailed explanation of the application for sensors and valve, and tests to detect and correct errors in the application of lasers and the motor, there is: a brief introduction to programming in LabVIEW, the description of the steps taken for connecting the sensors with cards, user manuals and application description of the equipment used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.