896 resultados para Motion sickness.
Resumo:
In the present study, to shed light on a role of positional error correction mechanism and prediction mechanism in the proactive control discovered earlier, we carried out a visual tracking experiment, in which the region where target was shown, was regulated in a circular orbit. Main results found in this research were following. Recognition of a time step, obtained from the environmental stimuli, is required for the predictive function. The period of the rhythm in the brain obtained from environmental stimuli is shortened about 10%, when the visual information is cut-off. The shortening of the period of the rhythm in the brain accelerates the motion as soon as the visual information is cut-off, and lets the hand motion precedes the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand precedes in average the target when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
Studies show cross-linguistic differences in motion event encoding, such that English speakers preferentially encode manner of motion more than Spanish speakers, who preferentially encode path of motion. Focusing on native Spanish speaking children (aged 5;00-9;00) learning L2 English, we studied path and manner verb preferences during descriptions of motion stimuli, and tested the linguistic relativity hypothesis by investigating categorization preferences in a non-verbal similarity judgement task of motion clip triads. Results revealed L2 influence on L1 motion event encoding, such that bilinguals used more manner verbs and fewer path verbs in their L1, under the influence of English. We found no effects of linguistic structure on non-verbal similarity judgements, and demonstrate for the first time effects of L2 on L1 lexicalization in child L2 learners in the domain of motion events. This pattern of verbal behaviour supports theories of bilingual semantic representation that postulate a merged lexico-semantic system in early bilinguals.
Resumo:
We explore the debates surrounding the constructive and discursive capabilities of accounting information focusing in particular on the reception volatility of numbers once they are produced and ‘exposed’ to various communities of minds. Drawing on Goffman’s (1974) frame analysis and Vollmer’s (2007) work on the three-dimensional character of numerical signs, we explore how numbers can go through gradual or instantaneous transformations, get caught up in public debates and become ‘agents’ or ‘captives’ in creating social order and in some cases social drama. In our analysis we also relate to the work of Durkheim (1993, 2002) on the sociology of morality to illustrate how numbers can become indicators of moral transgression. The study explores both historical and contemporary examples of controversies and recent accounting scandals to demonstrate how preparers (of financial information) can lose control over numbers which then acquire new meanings through social context and collective (re)framing. The main contribution of the study is to illustrate how the narratives attached to numbers are malleable and fluid across both time and space.
Resumo:
While a multitude of motion segmentation algorithms have been presented in the literature, there has not been an objective assessment of different approaches to fusing their outputs. This paper investigates the application of 4 different fusion schemes to the outputs of 3 probabilistic pixel-level segmentation algorithms. We performed an extensive experimentation using 6 challenge categories from the changedetection.net dataset demonstrating that in general simple majority vote proves to be more effective than more complex fusion schemes.
Resumo:
A strong body of work has explored the interaction between visual perception and language comprehension; for example, recent studies exploring predictions from embodied cognition have focused particularly on the common representation of sensory—motor and semantic information. Motivated by this background, we provide a set of norms for the axis and direction of motion implied in 299 English verbs, collected from approximately 100 native speakers of British English. Until now, there have been no freely available norms of this kind for a large set of verbs that can be used in any area of language research investigating the semantic representation of motion. We have used these norms to investigate the interaction between language comprehension and low-level visual processes involved in motion perception, validating the norming procedure’s ability to capture the motion content of individual verbs. Supplemental materials for this study may be downloaded from brm.psychonomic-journals.org/content/supplemental.
Resumo:
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.
Resumo:
We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L(4) and L(5), we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (delta lambda, delta pi) = (+/- 60 degrees, -/+ 120 degrees), where delta lambda is the difference in mean longitudes and delta pi is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as similar to 0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
Resumo:
This paper presents the second part in our study of the global structure of the planar phase space of the planetary three-body problem, when both planets lie in the vicinity of a 2/1 mean-motion resonance. While Paper I was devoted to cases where the outer planet is the more massive body, the present work is devoted to the cases where the more massive body is the inner planet. As before, outside the well-known Apsidal Corotation Resonances (ACR), the phase space shows a complex picture marked by the presence of several distinct regimes of resonant and non-resonant motion, crossed by families of periodic orbits and separated by chaotic zones. When the chosen values of the integrals of motion lead to symmetric ACR, the global dynamics are generally similar to the structure presented in Paper I. However, for asymmetric ACR the resonant phase space is strikingly different and shows a galore of distinct dynamical states. This structure is shown with the help of dynamical maps constructed on two different representative planes, one centred on the unstable symmetric ACR and the other on the stable asymmetric equilibrium solution. Although the study described in the work may be applied to any mass ratio, we present a detailed analysis for mass values similar to the Jupiter-Saturn case. Results give a global view of the different dynamical states available to resonant planets with these characteristics. Some of these dynamical paths could have marked the evolution of the giant planets of our Solar system, assuming they suffered a temporary capture in the 2/1 resonance during the latest stages of the formation of our Solar system.
Resumo:
Radial transport in the tokamap, which has been proposed as a simple model for the motion in a stochastic plasma, is investigated. A theory for previous numerical findings is presented. The new results are stimulated by the fact that the radial diffusion coefficients is space-dependent. The space-dependence of the transport coefficient has several interesting effects which have not been elucidated so far. Among the new findings are the analytical predictions for the scaling of the mean radial displacement with time and the relation between the Fokker-Planck diffusion coefficient and the diffusion coefficient from the mean square displacement. The applicability to other systems is also discussed. (c) 2009 WILEY-VCH GmbH & Co. KGaA, Weinheim
Resumo:
Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
New results are established here on the phase portraits and bifurcations of the kinematic model in system (1), first presented by H.K. Wilson in [3], and by him attributed to L. Markus (unpublished). A new, self-sufficient, study which extends that of [3] and allows an essential conclusion for the applicability of the model is reported here.
Resumo:
This thesis is related to the broad subject of automatic motion detection and analysis in videosurveillance image sequence. Besides, proposing the new unique solution, some of the previousalgorithms are evaluated, where some of the approaches are noticeably complementary sometimes.In real time surveillance, detecting and tracking multiple objects and monitoring their activities inboth outdoor and indoor environment are challenging task for the video surveillance system. Inpresence of a good number of real time problems limits scope for this work since the beginning. Theproblems are namely, illumination changes, moving background and shadow detection.An improved background subtraction method has been followed by foreground segmentation, dataevaluation, shadow detection in the scene and finally the motion detection method. The algorithm isapplied on to a number of practical problems to observe whether it leads us to the expected solution.Several experiments are done under different challenging problem environment. Test result showsthat under most of the problematic environment, the proposed algorithm shows the better qualityresult.
Resumo:
Background: Previous assessment methods for PG recognition used sensor mechanisms for PG that may cause discomfort. In order to avoid stress of applying wearable sensors, computer vision (CV) based diagnostic systems for PG recognition have been proposed. Main constraints in these methods are the laboratory setup procedures: Novel colored dresses for the patients were specifically designed to segment the test body from a specific colored background. Objective: To develop an image processing tool for home-assessment of Parkinson Gait(PG) by analyzing motion cues extracted during the gait cycles. Methods: The system is based on the idea that a normal body attains equilibrium during the gait by aligning the body posture with the axis of gravity. Due to the rigidity in muscular tone, persons with PD fail to align their bodies with the axis of gravity. The leaned posture of PD patients appears to fall forward. Whereas a normal posture exhibits a constant erect posture throughout the gait. Patients with PD walk with shortened stride angle (less than 15 degrees on average) with high variability in the stride frequency. Whereas a normal gait exhibits a constant stride frequency with an average stride angle of 45 degrees. In order to analyze PG, levodopa-responsive patients and normal controls were videotaped with several gait cycles. First, the test body is segmented in each frame of the gait video based on the pixel contrast from the background to form a silhouette. Next, the center of gravity of this silhouette is calculated. This silhouette is further skeletonized from the video frames to extract the motion cues. Two motion cues were stride frequency based on the cyclic leg motion and the lean frequency based on the angle between the leaned torso tangent and the axis of gravity. The differences in the peaks in stride and lean frequencies between PG and normal gait are calculated using Cosine Similarity measurements. Results: High cosine dissimilarity was observed in the stride and lean frequencies between PG and normal gait. High variations are found in the stride intervals of PG whereas constant stride intervals are found in the normal gait. Conclusions: We propose an algorithm as a source to eliminate laboratory constraints and discomfort during PG analysis. Installing this tool in a home computer with a webcam allows assessment of gait in the home environment.
Resumo:
This paper presents a computer-vision based marker-free method for gait-impairment detection in Patients with Parkinson's disease (PWP). The system is based upon the idea that a normal human body attains equilibrium during the gait by aligning the body posture with Axis-of-Gravity (AOG) using feet as the base of support. In contrast, PWP appear to be falling forward as they are less-able to align their body with AOG due to rigid muscular tone. A normal gait exhibits periodic stride-cycles with stride-angle around 45o between the legs, whereas PWP walk with shortened stride-angle with high variability between the stride-cycles. In order to analyze Parkinsonian-gait (PG), subjects were videotaped with several gait-cycles. The subject's body was segmented using a color-segmentation method to form a silhouette. The silhouette was skeletonized for motion cues extraction. The motion cues analyzed were stride-cycles (based on the cyclic leg motion of skeleton) and posture lean (based on the angle between leaned torso of skeleton and AOG). Cosine similarity between an imaginary perfect gait pattern and the subject gait patterns produced 100% recognition rate of PG for 4 normal-controls and 3 PWP. Results suggested that the method is a promising tool to be used for PG assessment in home-environment.