989 resultados para Mixed Embeddedness
Resumo:
This study examined the influence of a spruce budworm (Choristoneura fumiferana (Clem.)) outbreak on a boreal mixed-wood bird community in forest stands ranging in age from 0 to 223 yr. We asked if (1) patterns of species response were consistent with the existence of spruce budworm specialists, i.e., species that respond in a stronger quantitative or qualitative way than other species; (2) the superabundance of food made it possible for species to expand their habitat use in age classes that were normally less used; and (3) the response to budworm was limited to specialists or was it more widespread. Results here indicated that three species, specifically the Bay-breasted Warbler (Dendroica castanea), Tennessee Warbler (Vermivora peregrina), and Cape May Warbler (Dendroica tigrina), had a larger numerical response to the budworm outbreak. They responded with increases in density of up to tenfold over 4 or 5 yr. No other species responded with more than a twofold increase in the same time period. These species also showed a functional response by breeding more frequently in young stands aged 1–21 yr and intermediate stands aged 22–36 yr as budworm numbers increased. Our data also suggested that many species profited to a lesser extent from budworm outbreaks, but that this effect may be too subtle to detect in most studies. We found evidence of a positive numerical effect in at least 18 additional species in one or two stand-age categories but never in all three for any one species. Given the numerical response in many species and the potential influence of budworm on bird populations because of the vast extent of outbreaks, we believe that the population cycle of spruce budworm should be considered in any evaluation of population trends in eastern boreal birds.
Resumo:
Livestock grazing in the shortgrass steppe of the Intermountain region of British Columbia is predicted to have significant effects on grassland habitats and their associated ground-nesting bird communities. We tested whether grazed and ungrazed sites could be discriminated on the basis of their vegetation communities, whether the abundance of two ground-nesting bird species, Vesper Sparrow (Pooecetes gramineus) and Western Meadowlark (Sturnella neglecta), differed between grazed and ungrazed sites, and whether vegetation variables found to differ between grazed and ungrazed plots could be used to predict the abundance of the two bird species at a fine scale. Grazed sites were easily distinguishable from a site that had been ungrazed for >30 years based on the structure and composition of their vegetation communities. However, more detailed grazing categories could not be distinguished on the basis of vegetation characteristics. Despite the existence of grazing effects on vegetation structure and composition, we found no consistent differences in abundance of Vesper Sparrows and Western Meadowlarks between the grazed and ungrazed sites. However, there was weak evidence that the abundance of both species was higher at fine-scale plots (100 m radius point count station) with less bare ground and taller vegetation. Bare ground cover was lower on grazed plots, but vegetation was taller on ungrazed plots. Combined, our results suggest that low intensity grazing leads to grassland habitat change with both negative and positive effects on Vesper Sparrows and Western Meadowlarks, resulting in no net change in their broad-scale abundance.
Resumo:
Worldwide marine protected areas (MPAs) have been designated to protect marine resources, including top predators such as seabirds. There is no conclusive information on whether protected areas can improve population trends of seabirds when these are further exploited as tourist attractions, an activity that has increased in past decades. Humboldt Penguins (Spheniscus humboldti) and Magellanic Penguins (S. magellanicus) breed sympatrically on Puñihuil Islets, two small coastal islands off the west coast of Chiloé Island (41° S) in southern Chile that are subject to exploitation for tourism. Our goal was to compare the population size of the mixed colony of Humboldt and Magellanic Penguins before and after protection from unregulated tourism and freely roaming goats in 1997. For this purpose, two censuses were conducted in 2004 and 2008, and the numbers compared with those obtained in 1997 by other authors. The proportion of occupied, unoccupied, and collapsed/flooded burrows changed between years; there were 68% and 34% fewer collapsed burrows in 2004 and 2008, respectively, than in 1997. For the total number of burrows of both species, we counted 48% and 63% more burrows in 2004 and 2008, respectively, than in 1997. We counted 13% more burrows of Humboldt Penguins in 2008 than in 1997, and for Magellanic Penguins, we estimated a 64% increase in burrows in 2008. Presumably, this was as a result of habitat improvement attributable to the exclusion of tourists and the removal of goats from the islets. Although tourist visits to the islets are prohibited, tourism activities around the colonies are prevalent and need to be taken into account to promote appropriate management.
Resumo:
The influence of surface waves and an applied wind stress is studied in an ensemble of large eddy simulations to investigate the nature of deeply penetrating jets into an unstratified mixed layer. The influence of a steady monochromatic surface wave propagating parallel to the wind direction is parameterized using the wave-filtered Craik-Leibovich equations. Tracer trajectories and instantaneous downwelling velocities reveal classic counterrotating Langmuir rolls. The associated downwelling jets penetrate to depths in excess of the wave's Stokes depth scale, δs. Qualitative evidence suggests the depth of the jets is controlled by the Ekman depth scale. Analysis of turbulent kinetic energy (tke) budgets reveals a dynamical distinction between Langmuir turbulence and shear-driven turbulence. In the former, tke production is dominated by Stokes shear and a vertical flux term transports tke to a depth where it is dissipated. In the latter, tke production is from the mean shear and is locally balanced by dissipation. We define the turbulent Langmuir number Lat = (v*/Us)0.5 (v* is the ocean's friction velocity and Us is the surface Stokes drift velocity) and a turbulent anisotropy coefficient Rt = /( + ). The transition between shear-driven and Langmuir turbulence is investigated by varying external wave parameters δs and Lat and by diagnosing Rt and the Eulerian mean and Stokes shears. When either Lat or δs are sufficiently small the Stokes shear dominates the mean shear and the flow is preconditioned to Langmuir turbulence and the associated deeply penetrating jets.
Resumo:
This study uses large-eddy simulation (LES) to investigate the characteristics of Langmuir turbulence through the turbulent kinetic energy (TKE) budget. Based on an analysis of the TKE budget a velocity scale for Langmuir turbulence is proposed. The velocity scale depends on both the friction velocity and the surface Stokes drift associated with the wave field. The scaling leads to unique profiles of nondimensional dissipation rate and velocity component variances when the Stokes drift of the wave field is sufficiently large compared to the surface friction velocity. The existence of such a scaling shows that Langmuir turbulence can be considered as a turbulence regime in its own right, rather than a modification of shear-driven turbulence. Comparisons are made between the LES results and observations, but the lack of information concerning the wave field means these are mainly restricted to comparing profile shapes. The shapes of the LES profiles are consistent with observed profiles. The dissipation length scale for Langmuir turbulence is found to be similar to the dissipation length scale in the shear-driven boundary layer. Beyond this it is not possible to test the proposed scaling directly using available data. Entrainment at the base of the mixed layer is shown to be significantly enhanced over that due to normal shear turbulence.
Resumo:
The development of protocols for the identification of metal phosphates in phosphate-treated, metal-contaminated soils is a necessary yet problematical step in the validation of remediation schemes involving immobilization of metals as phosphate phases. The potential for Raman spectroscopy to be applied to the identification of these phosphates in soils has yet to be fully explored. With this in mind, a range of synthetic mixed-metal hydroxylapatites has been characterized and added to soils at known concentrations for analysis using both bulk X-ray powder diffraction (XRD) and Raman spectroscopy. Mixed-metal hydroxylapatites in the binary series Ca-Cd, Ca-Pb, Ca-Sr and Cd-Pb synthesized in the presence of acetate and carbonate ions, were characterized using a range of analytical techniques including XRD, analytical scanning electron microscopy (SEM), infrared spectroscopy (IR), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and Raman spectroscopy. Only the Ca-Cd series displays complete solid solution, although under the synthesis conditions of this study the Cd-5(PO4)(3)OH end member could not be synthesized as a pure phase. Within the Ca-Cd series the cell parameters, IR active modes and Raman active bands vary linearly as a function of Cd content. X-ray diffraction and extended X-ray absorption fine structure spectroscopy (EXAFS) suggest that the Cd is distributed across both the Ca(1) and Ca(2) sites, even at low Cd concentrations. In order to explore the likely detection limits for mixed-metal phosphates in soils for XRD and Raman spectroscopy, soils doped with mixed-metal hydroxylapatites at concentrations of 5, 1 and 0.5 wt.% were then studied. X-ray diffraction could not confirm unambiguously the presence or identity of mixed-metal phosphates in soils at concentrations below 5 wt.%. Raman spectroscopy proved a far more sensitive method for the identification of mixed-metal hydroxylapatites in soils, which could positively identify the presence of such phases in soils at all the dopant concentrations used in this study. Moreover, Raman spectroscopy could also provide an accurate assessment of the degree of chemical substitution in the hydroxylapatites even when present in soils at concentrations as low as 0.1%.
Resumo:
The intraseasonal variability (ISV) of the Indian summer monsoon is dominated by a 30–50 day oscillation between “active” and “break” events of enhanced and reduced rainfall over the subcontinent, respectively. These organized convective events form in the equatorial Indian Ocean and propagate north to India. Atmosphere–ocean coupled processes are thought to play a key role the intensity and propagation of these events. A high-resolution, coupled atmosphere–mixed-layer-oceanmodel is assembled: HadKPP. HadKPP comprises the Hadley Centre Atmospheric Model (HadAM3) and the K Profile Parameterization (KPP) mixed-layer ocean model. Following studies that upper-ocean vertical resolution and sub-diurnal coupling frequencies improve the simulation of ISV in SSTs, KPP is run at 1 m vertical resolution near the surface; the atmosphere and ocean are coupled every three hours. HadKPP accurately simulates the 30–50 day ISV in rainfall and SSTs over India and the Bay of Bengal, respectively, but suffers from low ISV on the equator. This is due to the HadAM3 convection scheme producing limited ISV in surface fluxes. HadKPP demonstrates little of the observed northward propagation of intraseasonal events, producing instead a standing oscillation. The lack of equatorial ISV in convection in HadAM3 constrains the ability of KPP to produce equatorial SST anomalies, which further weakens the ISV of convection. It is concluded that while atmosphere–ocean interactions are undoubtedly essential to an accurate simulation of ISV, they are not a panacea for model deficiencies. In regions where the atmospheric forcing is adequate, such as the Bay of Bengal, KPP produces SST anomalies that are comparable to the Tropical Rainfall Measuring Mission Microwave Imager (TMI) SST analyses in both their magnitude and their timing with respect to rainfall anomalies over India. HadKPP also displays a much-improved phase relationship between rainfall and SSTs over a HadAM3 ensemble forced by observed SSTs, when both are compared to observations. Coupling to mixed-layer models such as KPP has the potential to improve operational predictions of ISV, particularly when the persistence time of SST anomalies is shorter than the forecast lead time.
Resumo:
We investigated processing of wh-questions and declarative sentences with differing syntactic complexity in a case of mixed dementia (FA). FA was impaired in her ability to understand syntactically complex declarative sentences and syntactically complex wh-questions beginning with which but not complex who questions. This profile, novel in dementia, is similar to that reported for people with agrammatic aphasia and discerns a ‘‘fault line’’ of the language system along a syntactic/semantic parameter
Resumo:
Using the Met Office large-eddy model (LEM) we simulate a mixed-phase altocumulus cloud that was observed from Chilbolton in southern England by a 94 GHz Doppler radar, a 905 nm lidar, a dual-wavelength microwave radiometer and also by four radiosondes. It is important to test and evaluate such simulations with observations, since there are significant differences between results from different cloud-resolving models for ice clouds. Simulating the Doppler radar and lidar data within the LEM allows us to compare observed and modelled quantities directly, and allows us to explore the relationships between observed and unobserved variables. For general-circulation models, which currently tend to give poor representations of mixed-phase clouds, the case shows the importance of using: (i) separate prognostic ice and liquid water, (ii) a vertical resolution that captures the thin layers of liquid water, and (iii) an accurate representation the subgrid vertical velocities that allow liquid water to form. It is shown that large-scale ascents and descents are significant for this case, and so the horizontally averaged LEM profiles are relaxed towards observed profiles to account for these. The LEM simulation then gives a reasonable. cloud, with an ice-water path approximately two thirds of that observed, with liquid water at the cloud top, as observed. However, the liquid-water cells that form in the updraughts at cloud top in the LEM have liquid-water paths (LWPs) up to half those observed, and there are too few cells, giving a mean LWP five to ten times smaller than observed. In reality, ice nucleation and fallout may deplete ice-nuclei concentrations at the cloud top, allowing more liquid water to form there, but this process is not represented in the model. Decreasing the heterogeneous nucleation rate in the LEM increased the LWP, which supports this hypothesis. The LEM captures the increase in the standard deviation in Doppler velocities (and so vertical winds) with height, but values are 1.5 to 4 times smaller than observed (although values are larger in an unforced model run, this only increases the modelled LWP by a factor of approximately two). The LEM data show that, for values larger than approximately 12 cm s(-1), the standard deviation in Doppler velocities provides an almost unbiased estimate of the standard deviation in vertical winds, but provides an overestimate for smaller values. Time-smoothing the observed Doppler velocities and modelled mass-squared-weighted fallspeeds shows that observed fallspeeds are approximately two-thirds of the modelled values. Decreasing the modelled fallspeeds to those observed increases the modelled IWC, giving an IWP 1.6 times that observed.