939 resultados para Minimum Criteria for Interview
Resumo:
Ligands such as CO, O2, or NO are involved in the biological function of myoglobin. Here we investigate the energetics and dynamics of NO interacting with the Fe(II) heme group in native myoglobin using ab initio and molecular dynamics simulations. At the global minimum of the ab initio potential energy surface (PES), the binding energy of 23.4 kcal/mol and the Fe-NO structure compare well with the experimental results. Interestingly, the PES is found to exhibit two minima: There exists a metastable, linear Fe-O-N minimum in addition to the known, bent Fe-N-O global minimum conformation. Moreover, the T-shaped configuration is found to be a saddle point, in contrast to the corresponding minimum for NO interacting with Fe(III). To use the ab initio results for finite temperature molecular dynamics simulations, an analytical function was fitted to represent the Fe-NO interaction. The simulations show that the secondary minimum is dynamically stable up to 250 K and has a lifetime of several hundred picoseconds at 300 K. The difference in the topology of the heme-NO PES from that assumed previously (one deep, single Fe-NO minimum) suggests that it is important to use the full PES for a quantitative understanding of this system. Why the metastable state has not been observed in the many spectroscopic studies of myoglobin interacting with NO is discussed, and possible approaches to finding it are outlined.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
A bit-level processing (BLP) based linear CDMA detector is derived following the principle of minimum variance distortionless response (MVDR). The combining taps for the MVDR detector are determined from (1) the covariance matrix of the matched filter output, and (2) the corresponding row (or column) of the user correlation matrix. Due to the interference suppression capability of MVDR and the fact that no inversion of the user correlation matrix is involved, the influence of the synchronisation errors is greatly reduced. The detector performance is demonstrated via computer simulations (both synchronisation errors and intercell interference are considered).
Resumo:
Smooth trajectories are essential for safe interaction in between human and a haptic interface. Different methods and strategies have been introduced to create such smooth trajectories. This paper studies the creation of human-like movements in haptic interfaces, based on the study of human arm motion. These motions are intended to retrain the upper limb movements of patients that lose manipulation functions following stroke. We present a model that uses higher degree polynomials to define a trajectory and control the robot arm to achieve minimum jerk movements. It also studies different methods that can be driven from polynomials to create more realistic human-like movements for therapeutic purposes.
Resumo:
Adaptive filters used in code division multiple access (CDMA) receivers to counter interference have been formulated both with and without the assumption of training symbols being transmitted. They are known as training-based and blind detectors respectively. We show that the convergence behaviour of the blind minimum-output-energy (MOE) detector can be quite easily derived, unlike what was implied by the procedure outlined in a previous paper. The simplification results from the observation that the correlation matrix determining convergence performance can be made symmetric, after which many standard results from the literature on least mean square (LMS) filters apply immediately.
Resumo:
It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using the Wang-Sheeley-Arge (WSA) coronal model incorporating a new empirical magnetic topology–velocity relationship calibrated for use at 0.1 AU. In this study the empirical solar wind speed relationship was determined by using Helios perihelion observations, along with results from Riley et al. (2003) and Schwadron et al. (2005) as constraints. The new relationship was tested by using it to drive the ENLIL 3-D MHD solar wind model and obtain solar wind parameters at Earth (1.0 AU) and Ulysses (1.4 AU). The improvements in speed, its variability, and the occurrence of high-speed enhancements provide confidence that the new velocity relationship better determines the solar wind speed in the outer corona (0.1 AU). An analysis of this improved velocity field within the WSA model suggests the existence of two distinct mechanisms of the solar wind generation, one for fast and one for slow solar wind, implying that a combination of present theories may be necessary to explain solar wind observations.