986 resultados para Migration law
Resumo:
In this paper, we present an exact higher-order asymptotic analysis on the near-crack-tip fields in elastic-plastic materials under plane strain, Mode I. A four- or five-term asymptotic series of the solutions is derived. It is found that when 1.6 < n less-than-or-equal-to 2.8 (here, n is the hardening exponent), the elastic effect enters the third-order stress field; but when 2.8< n less-than-or-equal-to 3.7 this effect turns to enter the fourth-order field, with the fifth-order field independent. Moreover, if n>3.7, the elasticity only affects the fields whose order is higher than 4. In this case, the fourth-order field remains independent. Our investigation also shows that as long as n is larger than 1.6, the third-order field is always not independent, whose amplitude coefficient K3 depends either on K1 or on both K1 and K2 (K1 and K2 arc the amplitude coefficients of the first- and second-order fields, respectively). Firmly, good agreement is found between our results and O'Dowd and Shih's numerical ones[8] by comparison.
Resumo:
A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.
Resumo:
This paper presents an asymptotic analysis of the near-tip stress and strain fields of a sharp V-notch in a power law hardening material. First, the asymptotic solutions of the HRR type are obtained for the plane stress problem under symmetric loading. It is found that the angular distribution function of the radial stress sigma(r) presents rapid variation with the polar angle if the notch angle beta is smaller than a critical notch angle; otherwise, there is no such phenomena. Secondly, the asymptotic solutions are developed for antisymmetric loading in the cases of plane strain and plane stress. The accurate calculation results and the detailed comparisons are given as well. All results show that the singular exponent s is changeable for various combinations of loading condition and plane problem.
Resumo:
The evolution of the upward migration of the magma is a nonlinear and unstable problem in mathematics. It is difficult to solve it. And using the numerical method, the solution is relatively tedious and time-consuming. This paper introduces a method of the instantaneous point source to solve the linear and unstable heat conduction equation during the infinite period of time instead of the solution of the nonlinear and unstable heat conduction equation. The results obtained by this method coincide with those by the numerical method, meaning that this method offers a simple way to solve the nonlinear and unstable heat conduction equation.
Resumo:
From observed data on lithospheric plates, a unified empirical law for plate motion,valid for continental as well as oceanic plates, is obtained in the following form: The speedof plate motion U depends linearly on a geometric parameter T_d, ratio of the sum of effectiveridge length and trench arc length to the sum of area of continental part of plate and total areaof cold sinking slab. Based on this unified law, a simple mechanical analysis shows that, themain driving forces for lithospheric plates come from push along the mid-ocean ridge andpull by the cold sinking slab, while the main drag forces consist of the viscous traction beneaththe continental part of plate and over both faces of the sinking slab. Moreover, the specific-push along ridge and pull by slab are found to be of equal magnitude.
Resumo:
An experimental investigation will be performed on the thermocapillary motion of two bubbles in Chinese return-satellite. The experiment will study the migration process of bubble caused by thermocapillary effect in microgravity environment, and their interaction between two bubbles. The bubble is driven by the thermocapillary stress on the surface on account on the variation of the surface tension with temperature. The interaction between two bubbles becomes significant as the separation distance between them is reduced drastically so that the bubble interaction has to be considered. Recently, the problem has been discussed on the method of successive reflections, and accurate migration velocities of two arbitrarily oriented bubbles were derived for the limit of small Marangoni and Reynolds numbers. Numerical results for the migration of the two bubbles show that the interaction between two bubbles has significant influence on their thermocapillary migration velocities with a bubble approaching another. However, there is a lack of experimental validate for the theoretic results. Now the experimental facility is designed for experimenting time after time. A cone-shaped top cover is used to expel bubble from the cell after experiment. But, the cone-shaped top cover can cause temperature uniformity on horizontal plane in whole cell. Therefore, a metal board with multi-holes is fixed under the top cover. The board is able to let the temperature distribution on the board uniform because of their high heat conductivity, and the bubble can pass through it. In the system two bubbles are injected into the test cell respectively by two sets of cylinder. And the bubbles sizes are controlled by two sets of step-by-step motor. It is very important problem that bubble can be divorced from the injecting mouth in microgravity environment. Thus, other two sets of device for injecting mother liquid were used to push bubble. The working principle of injecting mother liquid is to utilize pressure difference directly between test cell and reservoir
Resumo:
Large parts of shallow seas are covered by regular seabed patterns and sand wave is one kind of these patterns. The instability of the sedimentary structures may hazard pipelines and the foundations of offshore structures. In the last decade or so, it's a focus for engineers to investigate the movement mechanism of sand waves. Previous theoretical studies of the subject have developed a general model to predict the growth and migration of sand waves, which is based on the two-dimensional vertical shallow water equations and the bed-form deformation equations. Although the relation between wave-current flow and sand bed deformation has been established, the topographic influence has not been considered in the model. In this paper some special patterns, which are asymmetric and close to the reality, are represent as the perturbed seabed and the evolution of sand waves is calculated. The combination of a steady flow induced by wind and a sinusoidal tidal flow is considered as the basic flow. Finally the relations of some parameters (grain size, etc.) and sand waves' growth and migration are discussed, and the growth rate and migration speeds of asymmetric sand waves are carried out.
Resumo:
From September 1975 to September 1977 we conducted field research on bowhead, Balaena mysticetus, and white, Delphinapterus leucas, whales in the U.S. Bering, Chukchi, and Beaufort Seas. The objectives were to determine the general distribution and migration of these whales in spring and autumn and to estimate abundance. We also surveyed the literature beginning in June 1975 through March 1978 to augment our empirical results. (PDF contains 48 pages)