940 resultados para Microscopy, Electron, Transmission
Resumo:
Three-dimensional electron microscopy (3-D EM) provides a framework for the analysis of large protein quaternary structures. The advantage over the generally higher resolving meth- od of X-ray crystallography is the embedding of the proteins in their physiological environ- ment. However, results of the two methods can be combined to obtain superior structural information. In this work, three different protein types – (i) Myriapod hemocyanin, (ii) vesi- cle-inducing protein in plastids 1 (Vipp1) and (iii) acetylcholine-binding protein (AChBP) – were structurally analyzed by 2-D and 3-D EM and, where possible, functionally interpreted.rnMyriapod hemocyanins have been previously shown to be 6x6-meric assemblies that, in case of Scutigera coleoptrata hemocyanin (ScoHc), show two 3x6-mer planes whith a stag- gering angle of approximately 60°. Here, previously observed structural differences between oxy- and deoxy-ScoHc could be substantiated. A 4° rotation between hexamers of two dif- ferent 3x6-mer planes was measured, which originates at the most central inter-hexamer in- terface. Further information about allosteric behaviour in myriapod hemocyanin was gained by analyzing Polydesmus angustus hemocyanin (PanHc), which shows a stable 3x6-mer and divergent histidine patterns in the inter-hexamer interfaces when compared to ScoHc. Both findings would conclusively explain the very different oxygen binding properties of chilopod and diplopod hemocyanin.rnVipp1 is a protein found in cyanobacteria and higher plants which is essential for thyla- koid membrane function and forms highly variable ring-shaped structures. In the course of this study, the first 3-D analysis of Vipp1 was conducted and yielded reconstructions of six differently sized Vipp1 rings from negatively stained images at resolutions between 20 to 30 Å. Furthermore, mutational analyses identified specific N-terminal amino acids that are essential for ring formation. On the basis of these analyses and previously published results, a hypothetical model of the Vipp1 tertiary and quaternary structure was generated.rnAChBP is a water-soluble protein in the hemolymph of mollusks. It is a structural and functional homologue of the ligand-binding domain of nicotinic acetylcholine receptors. For the freshwater snail Biomphalaria glabrata, we previously described two types of AChBP (BgAChBP1 and BgAChBP2). In this work, a 6 Å 3-D reconstruction of native BgAChBP is presented, which shows a dodecahedral assembly that is unprecedented for an AChBP. Single particle analysis of recombinantely expressed BgAChBP types led to preliminary results show- ing a dodecahedral assembly of BgAChBP1 and a dipentameric assembly of BgAChBP2. This indicates divergent biological functions of the two types.
Resumo:
Dentinal cracks are occasionally observed at the cut root face after root-end resection in apical surgery. The objective of this ex vivo study was to evaluate and compare the efficiency of visual aids to identify root-end dentinal cracks.
Resumo:
Solutions containing tin and fluoride exhibit remarkable anti-erosive properties with tin ions as a major agent. To elucidate its mechanism of action in dentine, the tin uptake on and in the tissue was investigated and related to histological findings and substance loss. Samples were treated twice daily, each treatment lasting for 2 min, with fluoride solutions [pH 4.5; 1,500 parts per million (p.p.m.) F] containing 2,100, 1,400, or 400 p.p.m. Sn as SnCl(2). In experiments 1 and 2, samples were eroded with citric acid (pH 2.3) six times each day, each treatment lasting for 5 min; in experiment 2, the demineralized organic matrix was continuously digested by collagenase; in experiment 3, no erosive challenges were performed. Sample surfaces and cross-sections were investigated using energy dispersive X-ray spectroscopy, scanning electron microscopy, and profilometry. Surface retention of tin was found in almost all treatment groups and was highest in experiment 2. On cross-sections, tin was retained within the organic matrix; in mineralized areas, tin was found mainly within a depth of 10 mum. Test solutions inhibited substance loss significantly; in experiment 2, the effect was dose-dependent. Erosion inhibition seemed to depend mainly on the incorporation of tin in the mineralized dentine when the organic portion was preserved, but on surface precipitation when the organic portion was continuously digested.
Resumo:
Lamellar bodies are the storage sites for lung surfactant within type II alveolar epithelial cells. The structure-function models of lamellar bodies are based on microscopic analyses of chemically fixed tissue. Despite available alternative fixation methods that are less prone to artifacts, such as cryofixation by high-pressure freezing, the nature of the lung, being mostly air filled, makes it difficult to take advantage of these improved methods. In this paper, we propose a new approach and show for the first time the ultrastructure of intracellular lamellar bodies based on cryo-electron microscopy of vitreous sections in the range of nanometer resolution. Thus, unspoiled by chemical fixation, dehydration and contrasting agents, a close to native structure is revealed. Our approach uses perfluorocarbon to substitute the air in the alveoli. Lung tissue was subsequently high-pressure frozen, cryosectioned and observed in a cryo-electron microscope. The lamellar bodies clearly show a tight lamellar morphology. The periodicity of these lamellae was 7.3 nm. Lamellar bifurcations were observed in our cryosections. The technical approach described in this paper allows the examination of the native cellular ultrastructure of the surfactant system under near in vivo conditions, and therefore opens up prospectives for scrutinizing various theories of lamellar body biogenesis, exocytosis and recycling.
Resumo:
Coronary late stent thrombosis, a rare but devastating complication, remains an important concern in particular with the increasing use of drug-eluting stents. Notably, pathological studies have indicated that the proportion of uncovered coronary stent struts represents the best morphometric predictor of late stent thrombosis. Intracoronary optical frequency domain imaging (OFDI), a novel second-generation optical coherence tomography (OCT)-derived imaging method, may allow rapid imaging for the detection of coronary stent strut coverage with a markedly higher precision when compared with intravascular ultrasound, due to a microscopic resolution (axial approximately 10-20 microm), and at a substantially increased speed of image acquisition when compared with first-generation time-domain OCT. However, a histological validation of coronary OFDI for the evaluation of stent strut coverage in vivo is urgently needed. Hence, the present study was designed to evaluate the capacity of coronary OFDI by electron (SEM) and light microscopy (LM) analysis to detect and evaluate stent strut coverage in a porcine model.
Resumo:
High-resolution microscopy techniques provide a plethora of information on biological structures from the cellular level down to the molecular level. In this review, we present the unique capabilities of transmission electron and atomic force microscopy to assess the structure, oligomeric state, function and dynamics of channel and transport proteins in their native environment, the lipid bilayer. Most importantly, membrane proteins can be visualized in the frozen-hydrated state and in buffer solution by cryo-transmission electron and atomic force microscopy, respectively. We also illustrate the potential of the scintillation proximity assay to study substrate binding of detergent-solubilized transporters prior to crystallization and structural characterization.
Resumo:
Lightmicroscopical (LM) and electron microscopi cal (EM) techniques, have had a major influence on the development and direction of cell biology, and particularly also on the investigation of complex host-parasite relationships. Earlier, microscopy has been rather descriptive, but new technical and scientific advances have changed the situation. Microscopy has now become analytical, quantitative and three-dimensional, with greater emphasis on analysis of live cells with fluorescent markers. The new or improved techniques that have become available include immunocytochemistry using immunogold labeling techniques or fluorescent probes, cryopreservation and cryosectioning, in situ hybridization, fluorescent reporters for subcellular localization, micro-analytical methods for elemental distribution, confocal laser scanning microscopy, scanning tunneling microscopy and live-imaging. Taken together, these tools are providing both researchers and students with a novel and multidimensional view of the intricate biological processes during parasite development in the host.
Resumo:
A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.
Resumo:
We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.
Resumo:
Diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) requires adhesion of microorganisms to enterocytes. Hence, a promising approach to immunoprophylaxis is to elicit antibodies against colonisation factor antigens (CFAs). Genes encoding the most prevalent ETEC-specific surface antigens were cloned into Vibrio cholerae and Salmonella vaccine strains. Expression of surface antigens was assessed by electron-microscopy. Whereas negative staining was effective in revealing CFA/I and CS3, but not CS6, immunolabelling allowed identification of all surface antigens examined. The V. cholerae vaccine strain CVD103 did not express ETEC-specific colonisation factors, whereas CVD103-HgR expressed CS3 only. However, expression of both CFA/I and CS3 was demonstrated in Salmonella Ty21a.
Resumo:
Despite efforts implicating the cationic channel transient receptor potential melastatin member 4 (TRPM4) to cardiac, nervous, and immunological pathologies, little is known about its structure and function. In this study, we optimized the requirements for purification and extraction of functional human TRPM4 protein and investigated its supra-molecular assembly. We selected the Xenopus laevis oocyte expression system because it lacks endogenous TRPM4 expression, it is known to overexpress functional human membrane channels, can be used for structure-function analysis within the same system, and is easily scaled to improve yield and develop moderate throughput capabilities through the use of robotics. Negative-stain electron microscopy (EM) revealed various sized low-resolution particles. Single particle analysis identified the majority of the projections represented the monomeric form with additional oligomeric structures potentially characterized as tetramers. Two-electrode voltage clamp electrophysiology demonstrated that human TRPM4 is functionally expressed at the oocyte plasma membrane. This study opens the door for medium-throughput screening and structure-function determination of this important therapeutically relevant target.
Resumo:
Gammaherpesviruses, including the human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are causative agents of lymphomas and other malignancies. The structural characterization of these viruses has been limited due to difficulties in obtaining adequate amount of virion particles. Here we report the first three-dimensional structural characterization of a whole gammaherpesvirus virion by an emerging integrated approach of cryo-electron tomography combined with single-particle cryo-electron microscopy, using murine gammaherpesvirus-68 (MHV-68) as a model system. We found that the MHV-68 virion consists of distinctive envelope and tegument compartments, and a highly conserved nucleocapsid. Two layers of tegument are identified: an inner tegument layer tethered to the underlying capsid and an outer, flexible tegument layer conforming to the overlying, pleomorphic envelope, consistent with the sequential viral tegumentation process inside host cells. Surprisingly, comparison of the MHV-68 virion and capsid reconstructions shows that the interactions between the capsid and inner tegument proteins are completely different from those observed in alpha and betaherpesviruses. These observations support the notion that the inner layer tegument across different subfamilies of herpesviruses has evolved significantly to confer specific characteristics related to viral-host interactions, in contrast to a highly conserved capsid for genome encapsidation and protection.
Resumo:
Cytoplasmic polyhedrosis virus (CPV) is unique within the Reoviridae family in having a turreted single-layer capsid contained within polyhedrin inclusion bodies, yet being fully capable of cell entry and endogenous RNA transcription. Biochemical data have shown that the amino-terminal 79 residues of the CPV turret protein (TP) is sufficient to bring CPV or engineered proteins into the polyhedrin matrix for micro-encapsulation. Here we report the three-dimensional structure of CPV at 3.88 A resolution using single-particle cryo-electron microscopy. Our map clearly shows the turns and deep grooves of alpha-helices, the strand separation in beta-sheets, and densities for loops and many bulky side chains; thus permitting atomic model-building effort from cryo-electron microscopy maps. We observed a helix-to-beta-hairpin conformational change between the two conformational states of the capsid shell protein in the region directly interacting with genomic RNA. We have also discovered a messenger RNA release hole coupled with the mRNA capping machinery unique to CPV. Furthermore, we have identified the polyhedrin-binding domain, a structure that has potential in nanobiotechnology applications.