998 resultados para Microscopie de balayage à effet tunnel (STM)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To discuss the diagnosis and treatment of a patient with cubital tunnel syndrome and to illustrate novel treatment modalities for the ulnar nerve and its surrounding structures and target tissues. The rationale for the addition of nerve-gliding techniques will be highlighted. Clinical Features: Two months after onset, a 17-year-old female nursing student who had a traumatic onset of cubital tunnel syndrome still experienced pain around the elbow and paresthesia in the ulnar nerve distribution. Electrodiagnostic tests were negative. Segmental cervicothoracic motion dysfunctions were present which were regarded as contributing factors hindering natural recovery. Intervention and Outcomes: After 6 sessions consisting of nerve-gliding techniques and segmental joint manipulation and a home exercise program consisting of nerve gliding and light free-weight exercises, a substantial improvement was recorded on both the impairment and functional level (pain scales, clinical tests, and Northwick Park Questionnaire). Symptoms did not recur within a 10-month follow-up period, and pain and disability had completely resolved. Conclusions: Movement-based management may be beneficial in the conservative management of cubital tunnel syndrome. As this intervention is in contrast with the traditional recommendation of immobilization, comparing the effects of both interventions in a systematic way is an essential next step to determine the optimal treatment of patients with cubital tunnel syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stress-wave force balance for measurement of thrust, lift, and pitching moment on a large scramjet model (40 kg in mass, 1.165 in in length) in a reflected shock tunnel has been designed, calibrated, and tested. Transient finite element analysis was used to model the performance of the balance. This modeling indicates that good decoupling of signals and low sensitivity of the balance to the distribution of. the load can be achieved with a three-bar balance. The balance was constructed and calibrated by applying a series of point loads to the model. A good comparison between finite element analysis and experimental results was obtained with finite element analysis aiding in the interpretation of some experimental results. Force measurements were made in a shock tunnel both with and without fuel injection, and measurements were compared with predictions using simple models of the scramjet and combustion. Results indicate that the balance is capable of resolving lift, thrust, and pitching moments with and without combustion. However vibrations associated with tunnel operation interfered with the signals indicating the importance of vibration isolation for accurate measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lift, pitching moment, and thrust/drag on a supersonic combustion ramjet were measured in the T4 free-piston shock tunnel using a three-component stress-wave force balance. The scramjet model was 0.567 m long and weighed approximately 6 kg. Combustion occurred at a nozzle-supply enthalpy of 3.3 MJ/kg and nozzle-supply pressure of 32 MPa at Mach 6.6 for equivalence ratios up to 1.4. The force coefficients varied approximately linearly with equivalence ratio. The location of the center of pressure changed by 10% of the chord of the model over the range of equivalence ratios tested. Lift and pitching-moment coefficients remained constant when the nozzle-supply enthalpy was increased to 4.9 MJ/kg at an equivalence ratio of 0.8, but the thrust coefficient decreased rapidly. When the nozzle-supply pressure was reduced at a nozzle-supply enthalpy of 3.3 MJ/kg and an equivalence ratio of 0.8, the combustion-generated increment of lift and thrust was maintained at 26 MPa, but disappeared at 16 MPa. Measured lift and thrust forces agreed well with calculations made using a simplified force prediction model, but the measured pitching moment substantially exceeded predictions. Choking occurred at nozzle-supply enthalpies of less than 3.0 MJ/kg with an equivalence ratio of 0.8. The tests failed to yield a positive thrust because of the skin-friction drag that accounted for up to 50% of the fuel-off drag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations of a complete reflected shock tunnel facility have been performed with the aim of providing a better understanding of the flow through these facilities. In particular, the analysis is focused on the premature contamination of the test flow with the driver gas. The axisymmetric simulations model the full geometry of the shock tunnel and incorporate an iris-based model of the primary diaphragm rupture mechanics, an ideal secondary diaphragm and account for turbulence in the shock tube boundary layer with the Baldwin-Lomax eddy viscosity model. Two operating conditions were examined: one resulting in an over-tailored mode of operation and the other resulting in approximately tailored operation. The accuracy of the simulations is assessed through comparison with experimental measurements of static pressure, pitot pressure and stagnation temperature. It is shown that the widely-accepted driver gas contamination mechanism in which driver gas 'jets' along the walls through action of the bifurcated foot of the reflected shock, does not directly transport the driver gas to the nozzle at these conditions. Instead, driver gas laden vortices are generated by the bifurcated reflected shock. These vortices prevent jetting of the driver gas along the walls and convect driver gas away from the shock tube wall and downstream into the nozzle. Additional vorticity generated by the interaction of the reflected shock and the contact surface enhances the process in the over-tailored case. However, the basic mechanism appears to operate in a similar way for both the over-tailored and the approximately tailored conditions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an end-to-end computational model of the HEG shock tunnel as a way to extract more precise test flow conditions and as a way of getting predictions of new operating conditions. For a selection of established operating conditions, the L1d program was used to simulate the one-dimensional gas-dynamic processes within the whole of the facility. The program reproduces the compression tube performance reliably and, with the inclusion of a loss factor near the upstream-end of the compression tube, it provides a good estimate of the equilibrium pressure in the shock-reflection region over the set of six standard operating conditions for HEG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional computer modelling techniques are being used to develop a probabilistic model of turbulence-related spray transport around various plant architectures to investigate the influence of plant architectures and crop geometry on the sprayapplication process. Plant architecture models that utilise a set of growth rules expressed in the Lindenmayer systems (L-systems) formalism have been developed and programmed using L-studio software. Modules have been added to simulate the movement ofdroplets through the air and deposition on the plant canopy. Deposition of spray on an artificial plant structure was measured in the wind tunnel at the University of Queensland, Gatton campus and the results compared to the model simulation. Further trials are planned to measure the deposition of spray droplets on various crop and weed species and the results from these trials will be used to refine and validate the combined spray and plant architecture model.