941 resultados para Microbiota


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Digestive complications in enteral nutrition (EN) can negatively affect the nutrition clinical outcome of hospitalized patients. Diarrhea and constipation are intestinal motility disorders associated with pharmacotherapy, hydration, nutrition status, and age. The aim of this study was to analyze the frequency of these intestinal motility disorders in patients receiving EN and assess risk factors associated with diarrhea and constipation in hospitalized patients receiving exclusive EN therapy in a general hospital. Materials and Methods: The authors performed a sequential and observational study of 110 hospitalized adult patients fed exclusively by EN through a feeding tube. Patients were categorized according to the type of intestinal transit disorder as follows: group D (diarrhea, 3 or more watery evacuations in 24 hours), group C (constipation, less than 1 evacuation during 3 days), and group N (absence of diarrhea or constipation). All prescription drugs were recorded, and patients were analyzed according to the type and amount of medication received. The authors also investigated the presence of fiber in the enteral formula. Results: Patients classified in group C represented 70% of the study population; group D comprised 13%, and group N represented 17%. There was an association between group C and orotracheal intubation as the indication for EN (P<.001). Enteral formula without fiber was associated with constipation (logistic regression analysis: P<.001). Conclusion: Constipation is more frequent than diarrhea in patients fed exclusively by EN. Enteral diet with fiber may protect against medication-associated intestinal motility disorders. The addition of prokinetic drugs seems to be useful in preventing constipation. (Nutr Clin Pract. XXXX;xx:xx-xx)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The intensities and specificities of salivary IgA antibody responses to antigens of Streptococcus mutans, the main pathogen of dental caries, may influence colonization by these organisms during the first 1.5 year of life. Thus, the ontogeny of salivary IgA responses to oral colonizers continues to warrant investigation, especially with regard to the influence of birth conditions, e.g. prematurity, on the ability of children to efficiently respond to oral microorganisms. In this study, we characterised the salivary antibody responses to two bacterial species which are prototypes of pioneer and pathogenic microorganisms of the oral cavity (Streptococcus mitis and Streptococcus mutans, respectively) in fullterm (FT) and preterm (PT) newborn children. Methods: Salivas from 123 infants (70 FT and 53 PT) were collected during the first 10 h after birth and levels of IgA and IgM antibodies and the presence of S. mutans and S. mitis were analysed respectively by ELISA and by chequerboard DNA-DNA hybridization. Two subgroups of 24 FT and 24 PT children were compared with respect to patterns of antibody specificities against S. mutans and S. mitis antigens, using Western blot assays. Cross-adsorption of 10 infant's saliva was tested to S. mitis, S. mutans and Enterococcus faecalis antigens. Results: Salivary levels of IgA at birth were 2.5-fold higher in FT than in PT children (Mann-Whitney; P < 0.05). Salivary IgA antibodies reactive with several antigens of S. mitis and S. mutans were detected at birth in children with undetectable levels of those bacteria. Adsorption of infant saliva with cells of S. mutans produced a reduction of antibodies recognizing S. mitis antigens in half of the neonates. The diversity and intensity of IgA responses were lower in PT compared to FT children, although those differences were not significant. Conclusion: These data provide evidence that children have salivary IgA antibodies shortly after birth, which might influence the establishment of the oral microbiota, and that the levels of salivary antibody might be related to prematurity. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background How to maintain “gut health” is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. Methods The SHIME® model was used to study the effect of Lactobacillus acidophilus 1014 on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2-wk using a culture medium. This stabilization period was followed by a 2-wk control period during which the microbiota was monitored. The microbiota was then subjected to a 4-wk treatment period by adding 5 mL of sterile peptone water with L. acidophilus CRL1014 at the concentration of 108 CFU/mL to vessel one (the stomach compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA) and ammonium analyses were carried out for monitoring of the microbial community from the colon compartments. Results A significant increase (p < 0.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed changes in the lactobacilli community from the colon compartments of the SHIME® reactor. The (SCFA) concentration increased (p < 0.01) during the treatment period, due mainly to significant increased levels of acetic, butyric, and propionic acids. However, ammonium concentrations decreased during the same period (p < 0.01). Conclusions This study showed the beneficial influence of L. acidophilus CRL 1014 on microbial metabolism and lactobacilli community composition for improving human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um questionamento muito frequente: qual o tempo que se deve esperar para movimentar um dente submetido a tratamento endodôntico, inclusive os de perfuração radicular? A extrapolação dos fenômenos observados em outras regiões da raiz e a fundamentação experimental com base em situações correlatas permitem afirmar que 30 dias correspondem a um período mais do que razoável para o reparo periapical estar em fase avançada de maturação e síntese. As forças ortodônticas são muito leves e dissipantes - muito mais do que o traumatismo dentário, o trauma oclusal e as forças mastigatórias normais -, e não devem interferir na patogenicidade e virulência das microbiotas envolvidas nas necroses e lesões periapicais crônicas, assim como não devem interferir nos fenômenos celulares e teciduais durante a reorganização dos tecidos apicais e periapicais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Bacteria associated with insects can have a substantial impact on the biology and life cycle of their host. The checkerboard DNA-DNA hybridization technique is a semi-quantitative technique that has been previously employed in odontology to detect and quantify a variety of bacterial species in dental samples. Here we tested the applicability of the checkerboard DNA-DNA hybridization technique to detect the presence of Aedes aegypti-associated bacterial species in larvae, pupae and adults of A. aegypti. Findings Using the checkerboard DNA-DNA hybridization technique we could detect and estimate the number of four bacterial species in total DNA samples extracted from A. aegypti single whole individuals and midguts. A. aegypti associated bacterial species were also detected in the midgut of four other insect species, Lutzomyia longipalpis, Drosophila melanogaster, Bradysia hygida and Apis mellifera. Conclusions Our results demonstrate that the checkerboard DNA-DNA hybridization technique can be employed to study the microbiota composition of mosquitoes. The method has the sensitivity to detect bacteria in single individuals, as well as in a single organ, and therefore can be employed to evaluate the differences in bacterial counts amongst individuals in a given mosquito population. We suggest that the checkerboard DNA-DNA hybridization technique is a straightforward technique that can be widely used for the characterization of the microbiota in mosquito populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR- laboratory scale- 14L )containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2·L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2·L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivou-se, com a realização deste trabalho, avaliar o efeito do nível de células somáticas sobre a microbiota e a proteólise do queijo Mussarela, durante o período de armazenamento. Foram selecionadas vacas com contagem de células somáticas ≤200mil células/mL; de > 200 a ≤400mil células/mL; de >400mil células/mL a ≤750mil células/mL e >750mil células/mL e que não tinham recebido tratamento com antimicrobianos nos dias que antecederam a coleta da matéria-prima. Os queijos produzidos foram avaliados após 1; 15 e 30 dias de armazenamento para a contagem de coliformes a 35ºC, coliformes a 45ºC, psicrotróficos e bactérias ácido lácticas. Paralelamente, foram determinados os índices de extensão e profundidade da proteólise. O experimento completo foi repetido quatro vezes e o delineamento experimental foi em blocos aleatórios. Na análise estatística, utilizou-se a análise de variância seguida do teste de Tukey, considerando p<0,05 como probabilidade mínima aceitável para diferença entre as médias. O leite com elevada contagem de células somáticas apresentou concentração menor de proteína e maior de nitrogênio não proteico. Observou-se diminuição das bactérias ácido lácticas no queijo elaborado com leite composto de células somáticas >750mil células/mL. Não obstante, ocorreu um aumento significativo na extensão e profundidade da proteólise durante o período de armazenamento, resultados observados nos queijos fabricados com o leite com células somáticas >400mil células/mL. Portanto, para se produzir um queijo Mussarela de boa qualidade torna-se necessário o controle da matéria prima, e esta deve apresentar células somáticas inferiores a 400mil células/mL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo do presente trabalho foi avaliar o efeito do congelamento e da incubação do leite de ovelhas da raça Santa Inês sobre os resultados da cultura bacteriológica. Desta forma, 45 amostras de leite ovino foram coletadas, e submetidas aos seguintes tratamentos: cultura bacteriológica (T1), e simultaneamente incubadas a 37°C por 18 horas (T2) e congeladas a -20°C por 24 horas (T3). Após esses períodos, as amostras dos T2 e T3 foram submetidas à cultura bacteriológica. O T2 possibilitou aumento no isolamento de estafilococos coagulase-negativo (ECN) comparadas ao T1, não ocorrendo o mesmo com o T3. No entanto, o T2 permitiu o desenvolvimento de bactérias normalmente presentes na microbiota dos ductos dos tetos em ovelhas sadias, como o Bacillus spp. Os resultados do presente estudo indicam que a incubação pode ser aplicada para a detecção de ECN na tentativa de reduzir resultados falso-negativos na cultura bacteriológica do leite de ovelhas da raça Santa Inês, determinando o uso mais eficiente dos recursos laboratoriais e a redução dos custos para os proprietários.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Enterococcus faecalis is a member of the mammalian gastrointestinal microbiota but has been considered a leading cause of hospital-acquired infections. In the oral cavity, it is commonly detected from root canals of teeth with failed endodontic treatment. However, little is known about the virulence and genetic relatedness among E. faecalis isolates from different clinical sources. This study compared the presence of enterococcal virulence factors among root canal strains and clinical isolates from hospitalized patients to identify virulent clusters of E. faecalis. Methods: Multilocus sequence typing analysis was used to determine genetic lineages of 40 E. faecalis clinical isolates from different sources. Virulence clusters were determined by evaluating capsule (cps) locus polymorphisms, pathogenicity island gene content, and antibiotic resistance genes by polymerase chain reaction. Results: The clinical isolates from hospitalized patients formed a phylogenetically separate group and were mostly grouped in the clonal complex 2, which is a known virulent cluster of E. faecalis that has caused infection outbreaks globally. The clonal complex 2 group comprised capsule-producing strains harboring multiple antibiotic resistance and pathogenicity island genes. On the other hand, the endodontic isolates were more diverse and harbored few virulence and antibiotic resistance genes. In particular, although more closely related to isolates from hospitalized patients, capsuleproducing E. faecalis strains from root canals did not carry more virulence/antibiotic genes than other endodontic isolates. Conclusions: E. faecalis isolates from endodontic infections have a genetic and virulence profile different from pathogenic clusters of hospitalized patients’ isolates, which is most likely due to niche specialization conferred mainly by variable regions in the genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggregatibacter actinomycetemcomitans is strongly implicated in the pathogenesis of periodontitis. In this study, the phenotypic and genotypic features of A. actinomycetemcomitans and the presence of genes involved in toxicity were determined. Sixty-five patients with periodontal pocket and 48 healthy subjects were evaluated. Biotyping, adherence and invasion, neuraminidase and biofilm production, presence of capsule and fimbria, as well as the presence of flp-1, apaH, ltx, and cdt genes were determined. Biotype II was the most prevalent. Sixty-six strains were adherent and 33 of them were able to invade KB cells. Sixty strains produced neuraminidase, and 55 strains biofilms. Strains showed capsule but not fimbriae. Forty-six strains were cytotoxic, and most strains harbored the apaH and flp-1 genes. LTX promoter and the ltxA gene were observed in all strains from periodontal patients. The cdtA gene was observed in 50 (71.4%) strains, cdtB in 48 (68.6%) strains, cdtC in 60 (85.7%), and cdtABC in 40 (57.1%) strains. The presence of A. actinomycetemcomitans harboring the cdtC gene from healthy subjects may represent a transitory microorganism in the oral microbiota. More studies are necessary to understand the real role of this microorganism in the pathogenesis of periodontal disease

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epithelial cells in oral cavities can be considered reservoirs for a variety of bacterial species. A polymicrobial intracellular flora associated with periodontal disease has been demonstrated in buccal cells. Important aetiological agents of systemic and nosocomial infections have been detected in the microbiota of subgingival biofilm, especially in individuals with periodontal disease. However, non-oral pathogens internalized in oral epithelial cells and their relationship with periodontal status are poorly understood. The purpose of this study was to detect opportunistic species within buccal and gingival crevice epithelial cells collected from subjects with periodontitis or individuals with good periodontal health, and to associate their prevalence with periodontal clinical status. Quantitative detection of total bacteria and Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis in oral epithelial cells was determined by quantitative real-time PCR using universal and species-specific primer sets. Intracellular bacteria were visualized by confocal microscopy and fluorescence in situ hybridization. Overall, 33 % of cell samples from patients with periodontitis contained at least one opportunistic species, compared with 15 % of samples from healthy individuals. E. faecalis was the most prevalent species found in oral epithelial cells (detected in 20.6 % of patients with periodontitis, P = 0.03 versus healthy individuals) and was detected only in cells from patients with periodontitis. Quantitative real-time PCR showed that high levels of P. aeruginosa and S. aureus were present in both the periodontitis and healthy groups. However, the proportion of these species was significantly higher in epithelial cells of subjects with periodontitis compared with healthy individuals (P = 0.016 for P. aeruginosa and P = 0.047 for S. aureus). Although E. faecalis and P. aeruginosa were detected in 57 % and 50 % of patients, respectively, with probing depth and clinical attachment level ≥6 mm, no correlation was found with age, sex, bleeding on probing or the presence of supragingival biofilm. The prevalence of these pathogens in epithelial cells is correlated with the state of periodontal disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O conhecimento das práticas nutricionais é essencial para coordenar um bom programa alimentar ao animal; contudo, é necessário conhecer juntamente com as atividades e características específicas de cada animal, o funcionamento da fisiologia digestiva dos equinos, para adequar as suas necessidades e maximizar o aproveitamento dos nutrientes fornecidos. Entre os aditivos utilizados na produção animal, destacam-se os probióticos, os quais trazem beneficios à saúde do hospedeiro, não deixam resíduos nos produtos de origem animal e não promovem resistência às drogas. Estes contêm microrganismos e substâncias que propiciam o balanceamento microbiano intestinal adequado e contribuem efetivamente para a melhoria na absorção dos nutrientes pelo organismo animal. As leveduras têm sido administradas aos animais há centenas de anos seja na forma de mosto fermentado, subprodutos de fábricas e destilarias ou como produtos comerciais especialmente produzidos para alimentação animal. São microrganismos anaeróbios facultativos, o que significa que podem sobreviver e crescer, com ou sem oxigênio. Atualmente, foram conduzi das várias pesquisas demonstrando a importância do equilíbrio na microbiota intestinal, através de alimentação adequada, favorecendo o crescimento de uma microbiota benéfica, e assim melhorando o aproveitamento alimentar e desenvolvimento do animal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] It is generally assumed that sinking particulate organic carbon (POC) constitutes the main source of organic carbon supply to the deep ocean's food webs. However, a major discrepancy between the rates of sinking POC supply (collected with sediment traps) and the prokaryotic organic carbon demand (the total amount of carbon required to sustain the heterotrophic metabolism of the prokaryotes; i.e., production plus respiration, PCD) of deep-water communities has been consistently reported for the dark realm of the global ocean. While the amount of sinking POC flux declines exponentially with depth, the concentration of suspended, buoyant non-sinking POC (nsPOC; obtained with oceanographic bottles) exhibits only small variations with depth in the (sub)tropical Northeast Atlantic. Based on available data for the North Atlantic we show here that the sinking POC flux would contribute only 4–12% of the PCD in the mesopelagic realm (depending on the primary production rate in surface waters). The amount of nsPOC potentially available to heterotrophic prokaryotes in the mesopelagic realm can be partly replenished by dark dissolved inorganic carbon fixation contributing between 12% to 72% to the PCD daily. Taken together, there is evidence that the mesopelagic microheterotrophic biota is more dependent on the nsPOC pool than on the sinking POC supply. Hence, the enigmatic major mismatch between the organic carbon demand of the deep-water heterotrophic microbiota and the POC supply rates might be substantially smaller by including the potentially available nsPOC and its autochthonous production in oceanic carbon cycling models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The normal gut microbiota has several important functions in host physiology and metabolism, and plays a key role in health and disease. Bifidobacteria, which are indigenous components of gastrointestinal microbiota, may play an important role in maintaining the well-being of the host although its precise function is very difficult to study. Its physiological and biochemical activities are controlled by many factors, particularly diet and environment. Adherence and colonization capacity are considered as contributing factors for immune modulation, pathogen exclusion, and enhanced contact with the mucosa. In this way, bifidobacteria would fortify the microbiota that forms an integral part of the mucosal barrier and colonization resistance against pathogens. Bifidobacteria are not only subjected to stressful conditions in industrial processes, but also in nature, where the ability to respond quickly to stress is essential for survival. Bifidobacteria, like other microorganisms, have evolved sensing systems for/and defences against stress that allow them to withstand harsh conditions and sudden environmental changes. Bacterial stress responses rely on the coordinated expression of genes that alter various cellular processes and structures (e.g. DNA metabolism, housekeeping genes, cell-wall proteins, membrane composition) and act in concert to improve bacterial stress tolerance. The integration of these stress responses is accomplished by regulatory networks that allow the cell to react rapidly to various and sometimes complex environmental changes. This work examined the effect of important stressful conditions, such as changing pH and osmolarity, on the biosynthesis of cell wall proteins in B. pseudolongum subsp. globosum. These environmental factors all influence heavily the expression of BIFOP (BIFidobacterial Outer Proteins) in the cell-wall and can have an impact in the interaction with host. Also evidence has been collected linking the low concentration of sugar in the culture medium with the presence or absence of extracromosomal DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifidobacteria constitute up to 3% of the total microbiota and represent one of the most important healthpromoting bacterial groups of the human intestinal microflora. The presence of Bifidobacterium in the human gastrointestinal tract has been directly related to several health-promoting activities; however, to date, no information about the specific mechanisms of interaction with the host is available. The first health-promoting activities studied in these job was the oxalate-degrading activity. Oxalic acid occurs extensively in nature and plays diverse roles, especially in pathological processes. Due to its highly oxidizing effects, hyper absorption or abnormal synthesis of oxalate can cause serious acute disorders in mammals and be lethal in extreme cases. Intestinal oxalate-degrading bacteria could therefore be pivotal in maintaining oxalate homeostasis, reducing the risk of kidney stone development. In this study, the oxalate-degrading activity of 14 bifidobacterial strains was measured by a capillary electrophoresis technique. The oxc gene, encoding oxalyl-CoA decarboxylase, a key enzyme in oxalate catabolism, was isolated by probing a genomic library of B. animalis subsp. lactis BI07, which was one of the most active strains in the preliminary screening. The genetic and transcriptional organization of oxc flanking regions was determined, unravelling the presence of other two independently transcribed open reading frames, potentially responsible for B. animalis subsp. lactis ability to degrade oxalate. Transcriptional analysis, using real-time quantitative reverse transcription PCR, revealed that these genes were highly induced in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 4.5. Acidic conditions were also a prerequisite for a significant oxalate degradation rate, which dramatically increased in oxalate pre-adapted cells, as demonstrated in fermentation experiments with different pH-controlled batch cultures. These findings provide new insights in the characterization of oxalate-degrading probiotic bacteria and may support the use of B. animalis subsp. lactis as a promising adjunct for the prophylaxis and management of oxalate-related kidney disease. In order to provide some insight into the molecular mechanisms involved in the interaction with the host, in the second part of the job, we investigated whether Bifidobacterium was able to capture human plasminogen on the cell surface. The binding of human plasminogen to Bifidobacterium was dependent on lysine residues of surface protein receptors. By using a proteomic approach, we identified six putative plasminogen-binding proteins in the cell wall fraction of three strain of Bifidobacterium. The data suggest that plasminogen binding to Bifidobactrium is due to the concerted action of a number of proteins located on the bacterial cell surface, some of which are highly conserved cytoplasmic proteins which have other essential cellular functions. Our findings represent a step forward in understanding the mechanisms involved in the Bifidobacterium-host interaction. In these job w studied a new approach based on to MALDI-TOF MS to measure the interaction between entire bacterial cells and host molecular target. MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight)—mass spectrometry has been applied, for the first time, in the investigation of whole Bifidobacterium cells-host target proteins interaction. In particular, by means of this technique, a dose dependent human plasminogen-binding activity has been shown for Bifidobacterium. The involvement of lysine binding sites on the bacterial cell surface has been proved. The obtained result was found to be consistent with that from well-established standard methodologies, thus the proposed MALDI-TOF approach has the potential to enter as a fast alternative method in the field of biorecognition studies involving in bacterial cells and proteins of human origin.