982 resultados para Micro-ring resonator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quartz crystal resonator has been traditionally employed in studying surface-confined physisorbed films and particles by measuring dissipation and frequency shifts. However, theoretical interpretation of the experimental observations is often challenged due to limited understanding of physical interaction mechanisms at the interfaces involved. Here we model a physisorbed interaction between particles and gold electrode surface of a quartz crystal and demonstrate how the nonlinear modulation of the electric response of the crystal due to the nonlinear interaction forces may be used to study the dynamics of the particles. In particular, we show that the graphs of the deviation in the third Fourier harmonic response versus oscillation amplitude provide important information about the onset, progress and nature of sliding of the particles. The graphs also present a signature of the surface-particle interaction and could be used to estimate the interaction energy profile. Interestingly, the insights gained from the model help to explain some of the experimental observations with physisorbed streptavidin-coated polystyrene microbeads on quartz resonators. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant pneumatic micro-actuators are interesting for applications requiring large strokes and forces in delicate environments. These include for instance minimally invasive surgery and assembly of microcomponents. This paper presents a theoretical and experimental analysis of a balloon-type compliant micro-actuator. Finite element modeling is used to describe the complex behavior of these actuators, which is validated through prototype experiments. Prototypes with dimensions ranging from 11mm × 2mm × 0.24mm to 4mm × 1mm × 0.12mm are fabricated by a newly developed production process based on micromilling and micromolding. The larger actuators are capable of delivering out-of-plane strokes of up to 7mm. Further, they have been integrated in a platform with two rotational and one translational degree of freedom. © 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the production and testing of an ortho-planar one-way micro-valve. The main advantages of such valves are that they are very compact and can be made from a single flat piece of material. A previous paper presents and discusses a micro-valve assembly based on a spider spring. The present paper focuses on the valve assembly process and the valve performance.. Several prototypes with a bore of 0.2 mm have been built using two manufacturing techniques (μEDM and stereo-lithography) and tested for pressures up to 7 bars. © 2008 International Federation for Information Processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main difficulties encountered in the development of microscale fluidic pumping systems stem from the fact that these systems tend to comprise highly three-dimensional parts, which are incompatible with traditional microproduction technologies. Regardless of the type of pumping principle, most of the hydraulic systems contain valves and in particular a one-way valve. This paper presents the design and modelling of an ortho-planar one-way microvalve. The main advantages of such a valve are that it is very compact and can be made from a single flat piece of material. An analytical model of the spring deflection has been developed and compared to FEM. A prototype with a bore of 1.5 mm has been build using a micro EDM (electro discharge machining) machine and also tested. © 2006 International Federation for Information Processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate a micro-inkjet printing technique as a reproducible post-process for the deposition of carbon nanoparticles and fullerene adlayers onto fully CMOS compatible micro-electro-mechanical silicon-on-insulator infrared (IR) light sources to enhance their infrared emission. We show experimentally a significant increase in the infrared emission efficiency of the coated emitters. We numerically validate these findings with models suggesting a dominant performance increase for wavelengths <5.5 μm. Here, the bimodal size distribution in the diameter of the carbon nanoparticles, relative to the fullerenes, is an effective mediator towards topologically enhanced emittance of our miniaturised emitters. A 90% improvement in IR emission power density has been shown which we have rationalised with an increase in the mean thickness of the deposited carbon nanoparticle adlayer. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental comparison of several vortex generator geometries was conducted at Mach 1.5, 1.8, and 2.5 to better understand downstream vortex development as a function of device shape and Mach number. The devices had heights less than that of the boundary-layer ("micro"-vortex generators) and were either vane-shaped or of the alternative microramp geometry. LDV was used to measure two components of velocity at several stations downstream of the devices. The velocity data were then fitted to a vortex model so that vortex parameters such as circulation, core radius, and trajectory were estimated. Mach number dependence was seen for all parameters. Vortex height and core radius both tended to decrease slightly with increasing Mach number. A critical vane angle for maximum circulation was observed and also decreased with increasing Mach number. Circulation was seen to scale with wall-friction velocity for Mach 1.5 and 1.8 but not 2.5. © 2012 by W.R. Nolan and H. Babinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, optimisation is an enabling technology in innovation. Multi-objective and multi-disciplinary design tools are essential in the engineering design process, and have been applied successfully in aerospace and turbomachinery applications extensively. These approaches give insight into the design space and identify the trade-offs between the competing performance measures satisfying a number of constraints at the same time. It is anticipated here that the same benefits can be obtained for the design of micro-scale combustors. In this paper, a multi-disciplinary automated design optimisation system was developed for this purpose, which comprises a commercial computational fluid dynamics package and a multi-objective variant of the Tabu Search optimisation algorithm. The main objectives that are considered in this study are to optimise the main micro-scale combustor design characteristics and to satisfy manufacturability considerations from the very beginning of the whole design operation. Hydrogen-air combustion as well as 14 geometrical and 2 operational parameters are used to describe and model the design problem. Two illustrative test cases will be presented, in which the most important device operational requirements are optimised, and the efficiency of the developed optimisation system is demonstrated. The identification, assessment and suitability of the optimum design configurations are discussed in detail. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classes of lattice material are reviewed, and their fracture response is explored in the context of the core of a sandwich panel. Attention is focussed on the strength of a sandwich plate with centre-cracked core made from an elastic-brittle square lattice. Predictions are summarised for the un-notched strength of the sandwiched core and for the fracture toughness of the lattice under remote tension, remote compression or remote shear. It is assumed that the lattice fails when the local stress in the cell walls attains the tensile or compressive strength of the solid, or when local buckling occurs. The local failure mechanism that dictates the unnotched strength may be different from that dictating the fracture toughness. Fracture mechanism maps are generated in order to reveal the dominant local failure mechanism for any given cell wall material.