929 resultados para Michael Borries
Resumo:
Computational biology increasingly demands the sharing of sophisticated data and annotations between research groups. Web 2.0 style sharing and publication requires that biological systems be described in well-defined, yet flexible and extensible formats which enhance exchange and re-use. In contrast to many of the standards for exchange in the genomic sciences, descriptions of biological sequences show a great diversity in format and function, impeding the definition and exchange of sequence patterns. In this presentation, we introduce BioPatML, an XML-based pattern description language that supports a wide range of patterns and allows the construction of complex, hierarchically structured patterns and pattern libraries. BioPatML unifies the diversity of current pattern description languages and fills a gap in the set of XML-based description languages for biological systems. We discuss the structure and elements of the language, and demonstrate its advantages on a series of applications, showing lightweight integration between the BioPatML parser and search engine, and the SilverGene genome browser. We conclude by describing our site to enable large scale pattern sharing, and our efforts to seed this repository.
Resumo:
Climate change and human activity are subjecting the environment to unprecedented rates of change. Monitoring these changes is an immense task that demands new levels of automated monitoring and analysis. We propose the use of acoustics as a proxy for the time consuming auditing of fauna, especially for determining the presence/absence of species. Acoustic monitoring is deceptively simple; seemingly all that is required is a sound recorder. However there are many major challenges if acoustics are to be used for large scale monitoring of ecosystems. Key issues are scalability and automation. This paper discusses our approach to this important research problem. Our work is being undertaken in collaboration with ecologists interested both in identifying particular species and in general ecosystem health.
Resumo:
The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.
Resumo:
Orthopaedics and Trauma Queensland is an internationally recognised research group that is developing into an international leader in research and education. It provides a stimulus for research, education and clinical application within the international orthopaedic and trauma communities. Orthopaedics and Trauma Queensland develops and promotes the innovative use of engineering and technology, in collaboration with surgeons, to provide new techniques, materials, procedures and medical devices. Its integration with clinical practice and strong links with hospitals ensure that the research will be translated into practical outcomes for patients. The group undertakes clinical practice in orthopaedics and trauma and applies core engineering, modelling and clinical skills to challenges in medicine. The research is built on a strong foundation of knowledge in biomedical engineering and incorporates expertise in cell biology, mathematical modelling, human anatomy and physiology and clinical medicine in orthopaedics and trauma. New knowledge is being developed and applied to the full range of orthopaedic diseases and injuries, such as knee and hip replacements, fractures and spinal deformities.
Resumo:
A curriculum for a university-level course called Business Process Modeling is presented in order to provide guidance for the increasing number of institutions who are currently developing such contents. The course caters to undergraduate and post graduate students. Its content is drawn from recent research, industry practice, and established teaching material, and teaches ways of specifying business processes for the analysis and design of process-aware information systems. The teaching approach is a blend of lectures and classroom exercises with innovative case studies, as well as reviews of research material. Students are asked to conceptualize, analyze, and articulate real life process scenarios. Tutorials and cheat sheets assist with the learning experience. Course evaluations from 40 students suggest the adequacy of the teaching approach. Specifically, evaluations show a high degree of satisfaction with course relevance, content presentation, and teaching approach.
Resumo:
Learning a digital tool is often a hidden process. We tend to learn new tools in a bewildering range of ways. Formal, informal, structured, random, conscious, unconscious, individual, group strategies, may all play a part, but are often lost to us in the complex and demanding processes of learning. But when we reflect carefully on the experience, some patterns and surprising techniques emerge. This monograph presents the thinking of seven students in MDN642, Digital Pedagogies, where they have deliberately reflected on the mental processes at work as they learnt a digital technology of their choice.
Resumo:
The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.
Resumo:
In this paper we respond to calls for an institution-based perspective on strategy. With its emphasis upon mimetic, coercive, and normative isomorphism, institutional theory has earned a deterministic reputation and seems an unlikely foundation on which to construct a theory of strategy. However, a second movement in institutional theory is emerging that gives greater emphasis to creativity and agency. We develop this approach by highlighting co-evolutionary processes that are shaping the varieties of capitalism (VoC) in Asia. To do so, we examine the extent to which the VoC model can be fruitfully applied in the Asian context. In the spirit of the second movement of institutional theory, we describe three processes in which firm strategy collectively and intentionally feeds back to shape institutions: (1) filling institutional voids, (2) retarding institutional innovation, and (3) deploying institutional escape. We outline the key contributions contained in the articles of this Special Issue and discuss a research agenda generated by the VoC perspective.
Resumo:
Forensic analysis requires the acquisition and management of many different types of evidence, including individual disk drives, RAID sets, network packets, memory images, and extracted files. Often the same evidence is reviewed by several different tools or examiners in different locations. We propose a backwards-compatible redesign of the Advanced Forensic Formatdan open, extensible file format for storing and sharing of evidence, arbitrary case related information and analysis results among different tools. The new specification, termed AFF4, is designed to be simple to implement, built upon the well supported ZIP file format specification. Furthermore, the AFF4 implementation has downward comparability with existing AFF files.
Resumo:
The Melbourne Decision Making Questionnaire (Mann, Burnett, Radford, & Ford, 1997) measures selfreported decision-making coping patterns. The questionnaire was administered to samples of University students in the US (N = 475), Australia (N = 262), New Zealand (N = 260), Japan (N = 359), Hong Kong (N = 281), and Taiwan (N = 414). As predicted, students from the three Western, individualistic cultures (US, Australia, and New Zealand) were more con® dent of their decision-making ability than students from the three East Asian, group-oriented cultures (Japan, Hong Kong, Taiwan). No cross-cultural differences were found in scores on decision vigilance (a careful decision-making style). However, compared with Western students, the Asian students tended to score higher on buck-passing and procrastination (avoidant styles of decision making) as well as hypervigilance (a panicky style of decision making). Japanese students scored lowest on decision self-esteem and highest on procrastination and hypervigilance. It was argued that the con¯ ict model and its attendant coping patterns is relevant for describing and comparing decision making in both Western and Asian cultures.
Resumo:
This appendix describes the Order Fulfillment process followed by a fictitious company named Genko Oil. The process is freely inspired by the VICS (Voluntary Inter-industry Commerce Solutions) reference model1 and provides a demonstration of YAWL’s capabilities in modelling complex control-flow, data and resourcing requirements.
Resumo:
This chapter describes how the YAWL meta-model was extended to support the definition of variation points. These variation points can be used to describe different variants of a YAWL process model in a unified, configurable model. The model can then be configured to suit the needs of specific settings, e.g. for a new organization of project.
Resumo:
Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration. Because these effects seem contradictory, we aimed to determine whether a range of mechanical stimuli exists in which angiogenesis is favoured. A series of cyclic strain magnitudes were applied to a Matrigel-based “tube formation” assay and the total lengths of networks formed by human microvascular endothelial cells measured at 24 h. Network lengths were reduced at all strain levels, compared to unstretched controls. However, the levels of pro-angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were unchanged by strain, and vascular endothelial growth factor was uniformly elevated in stretched conditions. By repeating the assay with the addition of conditioned media from mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to increase network lengths, but not to alter the negative effect of cyclic stretching. Together, these results demonstrate that directly applied periodic strains can inhibit endothelial organisation in vitro, and suggest that this may be due to physical disruption rather than biochemical modulation. Most importantly, the results indicate that the straining of endothelial cells and their assembly into vascular-like structures must be studied simultaneously to adequately characterise the mechanical influence on vessel formation.
Resumo:
The YAWL system is structured as a service-oriented architecture. It is composed of an extensible set of YAWL Services [1], each of which is deployed at a certain endpoint and offers one or multiple interfaces. Some of these services are userfacing, meaning that they offer interfaces to end users, while others offer interfaces to applications or other services.