844 resultados para Mg-al Alloy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of manganese on gain refinement of a commercial AZ31 alloy has been investigated using an Al-60%Mn master alloy splatter as an alloying additive at 730 degrees C in aluminium titanite crucibles. It is shown that grain refinement by manganese is readily achievable in AZ31. Electron microprobe analyses reveal that prior to the addition of extra manganese the majority of the intermetallic particles found in AZ31 are of the AL(8)Mn(5) type. However, after the addition of extra manganese in the range from 0.1% to 0.8%, the predominant group of intermetallic particles changes to the metastable AlMn type. This leads to a hypothesis that the metastable AlMn intermetallic particles are more effective than Al8Mn5 as nucleation sites for magnesium grains. The hypothesis is supported by the observation that a long period of holding at 730 degrees C leads to an increase in grain size, due probably to the transformation of the metastable AlMn to the stable Al8Mn5. The hypothesis has also been used to understand the mechanism of grain refinement by superheating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental program has been undertaken to explore the effect of iron concentration on porosity levels in Al-Si alloy sand castings. The effect of iron concentrations above, below and equal to the critical iron content for alloys with either 5 or 9% Si and either 0, 1 or 3% Cu has been determined. Increasing iron concentrations were found to increase porosity in all alloys except the copper-containing Al-5% Si alloys which displayed a porosity minimum at the critical iron content. Porosity was observed to be higher in the Al-9% Si castings than the Al-5% Si castings. Differences in the primary phase volume fraction and morphology may explain this observation. The results of this experimental work do not support the existing published theories that have been proposed to explain the effect the iron on porosity. An alternative theory is therefore developed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A framework is presented for modeling the nucleation in the constitutionally supercooled liquid ahead of the advancing solid/liquid interface. The effects of temperature gradient, imposed velocity, slope of liquidus, and initial concentration have been taken into account in this model by considering the effect of interface retardation, which is caused by solute buildup at the interface. Furthermore, the effect of solute concentration on the chemical driving force for nucleation has been considered in this model. The model is used for describing the nucleation of Al-Si and Al-Cu alloys. It was found that the solute of Si has a significant impact on the chemical driving force for nucleation in AI-Si alloys whereas Cu has almost no effect in Al-Cu alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sand-cast plates were used to determine the effect of iron and manganese concentrations on porosity levels in Al-9 pet Si-0.5 pet Mg alloys. Iron increased porosity levels. Manganese additions increased porosity levels in alloys with 0.1 pet Fe, but reduced porosity in alloys with 0.6 and I pet Fe. Thermal analysis and quenching were undertaken to determine the effect of iron and manganese on the solidification of the Al-Si eutectic. At high iron levels, the presence of large beta-Al5FeSi was found to reduce the number of eutectic nucleation events and increase the eutectic grain size. The preferential formation of alpha-Al15Mn3Si2 upon addition of manganese reversed these effects. It is proposed that this interaction is due to beta-Al5FeSi and the Al-Si eutectic having common nuclei. Porosity levels are proposed to be controlled by the eutectic grain size and the size of the iron-bearing intermetallic particles rather than the specific intermetallic phase that forms.