969 resultados para Maximum output powers
Resumo:
As técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.
Resumo:
Several alternative approaches have been discussed: Levenberg-Marquardt - no satisfactory convergence speed + local minimum, Bacterial algorithm - problems with large dimensionality (speed), Clustering - no safe criterion for number of clusters + dimentionality problem.
Resumo:
Purpose The purpose of the present study was to develop and describe a simple method to evaluate the rate of ion reabsorption of eccrine sweat glands in human using the measurement of galvanic skin conductance (GSC) and local sweating rate (SR). This purpose was investigated by comparing the SR threshold for increasing GSC with following two criteria of sweat ion reabsorption in earlier studies such as 1) the SR threshold for increasing sweat ion was at approximately 0.2 to 0.5 mg/cm2/min and 2) exercise-heat acclimation improved the sweat ion reabsorption ability and would increase the criteria 1. Methods Seven healthy non-heat-acclimated male subjects received passive heat treatment both before and after 7 days of cycling in hot conditions (50% maximum oxygen uptake, 60 min/day, ambient temperature 32°C, and 50% relative humidity). Results Subjects became partially heat-acclimated, as evidenced by the decreased end-exercise heart rate (p<0.01), rate of perceived exhaustion (p<0.01), and oesophageal temperature (p=0.07), without alterations in whole-body sweat loss, from the first to the last day of training. As hypothesised, we confirmed that the SR threshold for increasing GSC was near the predicted SR during passive heating before exercise heat acclimation, and increased significantly after training (0.19 ± 0.09 to 0.32 ± 0.10 mg/cm2/min, p<0.05). Conclusions The reproducibility of sweat ion reabsorption by the eccrine glands in the present study suggests that the relationship between GSC and SR can serve as a new index for assessing the maximum rate of sweat ion reabsorption of eccrine sweat glands in humans.
Resumo:
The iterative nature of turbo-decoding algorithms increases their complexity compare to conventional FEC decoding algorithms. Two iterative decoding algorithms, Soft-Output-Viterbi Algorithm (SOVA) and Maximum A posteriori Probability (MAP) Algorithm require complex decoding operations over several iteration cycles. So, for real-time implementation of turbo codes, reducing the decoder complexity while preserving bit-error-rate (BER) performance is an important design consideration. In this chapter, a modification to the Max-Log-MAP algorithm is presented. This modification is to scale the extrinsic information exchange between the constituent decoders. The remainder of this chapter is organized as follows: An overview of the turbo encoding and decoding processes, the MAP algorithm and its simplified versions the Log-MAP and Max-Log-MAP algorithms are presented in section 1. The extrinsic information scaling is introduced, simulation results are presented, and the performance of different methods to choose the best scaling factor is discussed in Section 2. Section 3 discusses trends and applications of turbo coding from the perspective of wireless applications.
Resumo:
Objectives To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. Results A maximum power output of 114 ± 6 mWm−2 was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm−2. The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. Conclusion S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
Resumo:
In smart grids context, the distributed generation units based in renewable resources, play an important rule. The photovoltaic solar units are a technology in evolution and their prices decrease significantly in recent years due to the high penetration of this technology in the low voltage and medium voltage networks supported by governmental policies and incentives. This paper proposes a methodology to determine the maximum penetration of photovoltaic units in a distribution network. The paper presents a case study, with four different scenarios, that considers a 32-bus medium voltage distribution network and the inclusion storage units.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Mecânica /Energia
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by 1+α/2 for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.
Resumo:
Mestrado em Energias Sustentáveis
Resumo:
The real convergence hypothesis has spurred a myriad of empirical tests and approaches in the economic literature. This Work Project intends to test for real output and growth convergence in all N(N-1)/2 possible pairs of output and output growth gaps of 14 Eurozone countries. This paper follows a time-series approach, as it tests for the presence of unit roots and persistence changes in the above mentioned pairs of output gaps, as well as for the existence of growth convergence with autoregressive models. Overall, significantly greater evidence has been found to support growth convergence rather than output convergence in our sample.
Resumo:
Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.