950 resultados para Maxima and minima
Resumo:
A new 44 kyr long record of dinoflagellate (phytoplanktonic organisms) cysts (dinocysts) is presented from a marine sediment core collected on the Congolese margin with the aim of reconstructing past hydrological changes in the equatorial eastern Atlantic Ocean since Marine Isotopic Stage (MIS) 3. Our high-resolution dinocyst record indicates that significant temperature and moisture variations occurred across the glacial period, the last deglaciation and the Holocene. The use of specific dinocyst taxa, indicative of fluvial, upwelling and Benguela Current past environments for instance, provides insights into the main forcing mechanisms controlling palaeohydrological changes on orbital timescales. In particular, we are able, for the last 44 kyr, to correlate fluvial-sensitive taxa to monsoonal mechanisms related to precession minima–obliquity maxima combinations. While upwelling mechanisms appear as the main drivers for dinoflagellate productivity during MIS 2, dissolved nutrient-enriched Congo River inputs to the ocean also played a significant role in promoting dinoflagellate productivity between approximately 15.5 and 5 ka BP. Finally, this high-resolution dinocyst study permits us to precisely investigate the suborbital timing of the last glacial–interglacial termination, including an atypical warm and wet oceanic LGM signature, northern high-latitude abrupt climate change impacts in the equatorial eastern Atlantic, as well as a two-step decrease in moisture conditions during the Holocene at around 7–6 and 4–3.5 ka BP.
Resumo:
Available information on the larval release rhythms of brachyurans is biased to temperate estuarine species and outcomes resulting from some sort of artificial manipulation of ovigerous females. In this study we applied field methods to describe the larval release rhythms of an assemblage of tropical rocky shore crabs. Sampling the broods of ovigerous females of Pachygrapsus transversus at two different shores indicated a spatially consistent semilunar pattern, with larval release maxima around the full and new moon. Yet, synchronism between populations varied considerably, with the pattern obtained at the site exposed to a lower wave action far more apparent. Breeding cohorts at one of the sampled shores apparently belonged to actual age groups composing the ovigerous population. The data suggest that these breeding groups release their larvae in alternate syzygy periods, responding to a lunar cycle instead of the semilunar pattern observed for the whole population. For the description of shorter-term rhythms, temporal series at hour intervals were obtained by sampling the plankton and confinement boxes where ovigerous females were held. Unexpectedly, diurnal release activity prevailed over nocturnal hatching. Yet, only grapsids living higher on the shore exhibited strong preferences over the diel cycle, with P. transversus releasing their larvae during the day and Geograpsus lividus during the night. The pea crab Dissodactylus crinitichelis, the spider crab Epialtus brasiliensis and a suite of xanthoids undertook considerable releasing activity in both periods. Apart from the commensal pea crab D. crinitichelis, all other taxa revealed tide-related rhythms of larval release, with average estimates of the time of maximum hatching always around the time of high tides; usually during the flooding and slack, rather than the ebbing tide. Data obtained for P. transversus females held in confinement boxes indicated that early larval release is mostly due to nocturnal hatching, while zoeal release in diurnal groups took place at the time of high tide. Since nocturnal high tides at the study area occurred late, sometimes close to dusk, early release would allow more time for offshore transport of larvae when the action of potential predators is reduced.
Resumo:
In the present study we elaborated algorithms by using concepts from percolation theory which analyze the connectivity conditions in geological models of petroleum reservoirs. From the petrophysical parameters such as permeability, porosity, transmittivity and others, which may be generated by any statistical process, it is possible to determine the portion of the model with more connected cells, what the interconnected wells are, and the critical path between injector and source wells. This allows to classify the reservoir according to the modeled petrophysical parameters. This also make it possible to determine the percentage of the reservoir to which each well is connected. Generally, the connected regions and the respective minima and/or maxima in the occurrence of the petrophysical parameters studied constitute a good manner to characterize a reservoir volumetrically. Therefore, the algorithms allow to optimize the positioning of wells, offering a preview of the general conditions of the given model s connectivity. The intent is not to evaluate geological models, but to show how to interpret the deposits, how their petrophysical characteristics are spatially distributed, and how the connections between the several parts of the system are resolved, showing their critical paths and backbones. The execution of these algorithms allows us to know the properties of the model s connectivity before the work on reservoir flux simulation is started