972 resultados para Matrix-interstitial interaction
Resumo:
A precision measurement of the top quark mass m_t is obtained using a sample of ttbar events from ppbar collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m_t and a parameter DJES to calibrate the jet energy scale /in situ/. Using a total of 1087 events, a value of m_t = 173.0 +/- 1.2 GeV/c^2 is measured.
Resumo:
We report a measurement of the top quark mass, m_t, obtained from ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb^-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, with effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m_t and a parameter JES that determines /in situ/ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find m_t = 172.7 +/- 1.8 (stat. + JES) +/- 1.2 (syst.) GeV/c^2.
Resumo:
We present a measurement of the top quark mass in the all-hadronic channel (\tt $\to$ \bb$q_{1}\bar{q_{2}}q_{3}\bar{q_{4}}$) using 943 pb$^{-1}$ of \ppbar collisions at $\sqrt {s} = 1.96$ TeV collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix-element (ME) to $\ttbar$ candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invariant mass of pairs of jets. These templates form an overall likelihood function that depends on the top quark mass and on the jet energy scale (JES). We estimate both by maximizing this function. Given 72 observed events, we measure a top quark mass of 171.1 $\pm$ 3.7 (stat.+JES) $\pm$ 2.1 (syst.) GeV/$c^{2}$. The combined uncertainty on the top quark mass is 4.3 GeV/$c^{2}$.
Resumo:
The (overall trans) addition of hydrogen chloride to cyclohex-1- enecarbonitrile in anhydrous alcoholic media proceeds to give cis-2-chlorocyclohexanecarboxylate (together with some cis-2- chlorocyclohexanecarboxamide): no corresponding products with the trans-configuration are detectable. In anhydrous ether the addition proceeds to give a single isomer, presumably cis-, of 2-chlorocyclohexanecarbonitrile, indicating that the configuration of the products may not be equilibrium-controlled in alcoholic media. An examination of the steric factors indicates that the transition state for protonation of the presumed intermediate, 2-chlorocyclohexylidenemethylideneimine, leading to cis-product is favoured if interaction between the lateral π-orbital of the C-N double bond and the lone-pairs on the chlorine atom at the 2-position is large. Consideration of interactions in the transition states meets Zimmerman's criticism that invoking A1, 3 interaction existing in ground states to explain product configuration takes insufficient account of the Curtin-Hammett principle.
Resumo:
A new stress-strain law, which is a three parameter representation of stress in terms of strain has been proposed for the matrix displacement analysis of structures made of non-hookean materials. This formula has been utilized to study three typical problems. These studies brought out the effectiveness and suitability of this law for matrix displacement analysis.
Resumo:
An interesting interaction between glyoxylate and cystein takes place in phosphate buffer (pH 7.0) to form a product which is resistant to hydrolysis at ordinary temperatures. The reaction product is broken up by acid hydrolysis at elevated temperatures under controlled conditions, giving a quantitive yield of glyoxylate. Other keto acids, such as α-ketoglutarate, pyruvate and oxaloacetate, do not interact with cysteine under similar conditions. Methods based on these findings are described for(a) direct estimation of other keto acids in the presence of glyoxylate, and (b) assay of isocitritase and glyoxylate transaminase.
Resumo:
A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method.Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied.Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hydrolysis of beta-lactam antibiotics by beta-lactamases (e. g., metallo-beta-lactamase, m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins and imipenem. It is shown in this paper that the thiol/thione moieties eliminated from certain cephalosporins by m beta l-mediated hydrolysis readily react with molecular iodine to produce ionic compounds having S-I bonds. While the reaction of MTT with iodine produced the corresponding disulfide, MDT and DMETT produced the charge-transfer complexes MDT-I-2 and DMETT-I-2, respectively. Addition of two equivalents of I-2 to MDT produced a novel cationic complex having an almost linear S-I+-S moiety and I-5(-) counter anion.However, this reaction appears to be highly solvent dependent. When the reaction of MDT with I2 was carried out in water, the reaction produced a monocation having I-5(-), indicating the reactivity of MDT toward I2 is very similar to that of the most commonly used antithyroid drug methimazole (MMI). In contrast to MMI, MDT and DMETT, the triazine-based compound MTDT acts as a weak donor toward iodine. (C)2010 Elsevier Ltd. All rights reserved.
Resumo:
The problem of identification of parameters of a beam-moving oscillator system based on measurement of time histories of beam strains and displacements is considered. The governing equations of motion here have time varying coefficients. The parameters to be identified are however time invariant and consist of mass, stiffness and damping characteristics of the beam and oscillator subsystems. A strategy based on dynamic state estimation method, that employs particle filtering algorithms, is proposed to tackle the identification problem. The method can take into account measurement noise, guideway unevenness, spatially incomplete measurements, finite element models for supporting structure and moving vehicle, and imperfections in the formulation of the mathematical models. Numerical illustrations based on synthetic data on beam-oscillator system are presented to demonstrate the satisfactory performance of the proposed procedure.
Resumo:
A polymer containing electron-rich aromatic donors (1,5-dialkoxynaphthalene (DAN)) was coerced into a folded state by an external folding agent that contained an electron-deficient aromatic acceptor (pyromellitic diimide (PM)) unit. The donor-containing polymer was designed to carry a tertiary amine moiety in the linking segment, which served as an H-bonding site for reinforcing the interaction with the acceptor containing folding agent that also bore a carboxylic acid group. The H-bonding interaction of the carboxylic acid and the tertiary amine brings the PDI unit between two adjacent DAN units along the polymer backbone to induce charge-transfer (C-T) interactions, and this in turn causes the polymer chain to form a pleated structure. Evidence for the formation of such a pleated structure was obtained from NMR titration studies and also by monitoring the C-T band in their UV-visible spectra. By varying the length of the segment that links the PDI acceptor to the carboxylic acid group, we showed that the most effective folding agent was the one that had a single carbon spacer, as evident from the highest value of the association constant. Control experiments with propionic acid clearly demonstrated the importance of the additional C-T interactions for venerating the folded structures. Further, solution viscosity measurements in the presence of varying amounts of the folding agent revealed a gradual stiffening of the chain in the case of the PDI carrying carboxylic acid, whereas no such affect was seen in the case of simple propionic acid. These observations were supported by D FT calculations of the interactions of a dimeric model of the polymer with the various folding agents; here too the stability of the complex was seen to be highest in the case of the single carbon spacer.
Resumo:
In this study, biodegradable blend of Poly (Ethylene-co-Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising Much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two-stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 1044-1056, 2010
Resumo:
Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanciparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50 ppm concentration] in aqueous dispersion was Studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is More than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanciparticles (425 mn) was noted till 0.45% BSA, beyond that a blue shift towards 410 urn was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400 rim. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir Curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried Out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. (C) 2009 Elsevier B.V. All rights reserved.