999 resultados para Manhattan Project (U.S.)


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution of paragenetic assemblages of trace and rare elements, as revealed by factor analysis (R-mode, Q-mode), the ratios of elements to Zr and the interpretation of these data in the context of the known mineralogy, lithology, and geology of the region, provide the bases for the outline of the geochemical history of sedimentation in the study area that forms the subject of this chapter. Two stages may be discerned. 1. Late-Middle Jurassic-Early Cretaceous (160-106? Ma). The sediments that accumulated in relatively shallow water (shelf) were predominantly clay, with dispersed sapropelic organic matter, plant fragments, pyrite, admixtures of acid-medium volcanic glass, and epigenetic crystals of gypsum. The bottom water layers of the basin are notably stagnant. The sediments are characterized by higher amounts of V, Zn, Cu, Cr, Rb, and Be associated with organic matter. Lower Cretaceous sediments, separated from those of the Upper Jurassic by a hiatus, accumulated in a deepened and enlarging basin. These Lower Cretaceous deposits are chemically similar to those of the Upper Jurassic, but contain diagenetic concentrations of Zn, Ni, and La. 2. Early-middle Albian (Unit 5)-middle Maestrichtian (1067-66.6Ma). The prevailing regime was that of an open ocean basin that tended to expand and deepen. During the second half of the early-middle Albian, the biogenic components Ba, Sr, and CaCO3 accumulated. By the end of this interval, Ti/Zr values had increased. In conjunction data on mineral composition, they testify to an outburst of basaltoid volcanism related to tectonic activity before an erosional hiatus (late Albian-Cenomanian). At the end of the Cenomanian-Turonian, residual deposits of predominantly clay sediments with relatively high amounts of Ti and Zr and associated rare alkalis (Li, Rb) accumulated. Clay sediments deposited during the Coniacian-Santonian were characterized by higher concentrations of Ti, Zr, Li, and Rb, by diagenetic carbonate phases of Ni, Zn, and La, and by sulphides and Fe-oxides with an admixture of Ni and Co. The latter half of the interval saw the deposition of fine basaltoid volcanoclastic material, diagenetically altered by zeolitization and carbonatization and enriched with Se, Pb, Ti, Sr, Ba, Y, and Yb. Sediments with a similar chemistry accumulated in the Campanian-middle Maestrichtian. Strong current activity preceding a global hiatus at the Mesozoic/Cenozoic boundary is reflected in both lower sedimentation rates and the presence of higher residual concentrations of Ti, Zr, Ba, Sr, and other elements studied in this chapter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results and discussion cover pigment analyses of 36 sediment samples recovered by Deep Sea Drilling Project Leg 64, and six samples from the Leg 64 site-survey cruise in the Guaymas Basin (Scripps Institution of Oceanography, Leg 3). Pigments investigated were tetrapyrroles, tetraterpenoids, and the PAH compound perylene. Traces of mixed nickel and copper ETIO-porphyrins were ubiquitous in all sediment samples, except for the very surface (i.e., <2 m sub-bottom), and their presence is taken as an indication of minor influxes of previously oxidized allochthonous (terrestrial) organic matter. Phorbides and chlorins isolated from Site 479 sediment samples (i.e., the oxygen-minimum locale, northeast of the Guaymas Basin) well represent the reductive diagenesis ("Treibs Scheme"; see Baker and Palmer, 1978; Treibs, 1936) of chlorophyll derivatives. Three forms of pheophytin-a, plus a variety of phorbides, were found to give rise to freebase porphyrins, nickel phylloerythrin, and nickel porphyrins, with increasing depth of burial (increasing temperature). Sediments from Sites 481, 10G, and 18G yielded chlorophyll derivatives characteristic of early oxidative alterations. Included among these pigments are allomerized pheophytin-a, purpurin-18, and chlorin-p6. The high thermal gradient imposed upon the late Quaternary sediments of Site 477 greatly accelerated chlorophyll diagenesis in the adjacent overlying sediments, that is, the production of large quantities of free-base desoxophylloerythroetioporphyrin (DPEP) occurred in a section (477-7-5) presently only 49.8 meters sub-bottom. Present depth and age of these sediments are such that only chlorins and phorbides would be expected. Carotenoid (i.e., tetraterpenoids) concentrations were found to decrease rapidly with increasing sub-bottom depth. Less deeply buried sediments (e.g., 0-30 m) yielded mixtures of carotenes and oxygen-substituted carotenoids. Oxygencontaining (oxy-, oxo-, epoxy-) carotenoids were found to be lost preferentially with increased depth of burial. Early carotenoid diagenesis is suggested as involving interacting reductions and dehydrations whereby dehydro-, didehydro-, and retro-carotenes are generated. Destruction of carotenoids as pigments may involve oxidative cleavage of the isoprenoid chain through epoxy intermediates, akin to changes in the senescent cells of plants. Perylene was found to be a common component of the extractable organic matter from all sediments investigated. The generation of alkyl perylenes was found to parallel increases in the existing thermal regime at all sites. Igneous sills and sill complexes within the sediment profile of Site 481 altered (i.e., scrambled) the otherwise straightforward thermally induced alkylation of perylene. The degree of perylene alkylation is proposed as an indicator of geothermal stress for non-contemporaneous marine sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selected parts of ten frozen core samples from Holes 482A, 482B, 483A, and 485A, Leg 65 of the Deep Sea Drilling Project (DSDP), were analyzed for residual carbohydrates in order to determine the provenance and history of the organic material in the sediments. The samples, which represented silty-clay, shale, and nannofossil- chalk sediments, were analyzed for water-soluble monosaccharides, acid-soluble monosaccharides, and for starch and cellulose. Most samples yielded positive results for acid-extractable (polymeric) arabinose, fucose, xylose, mannose, galactose, and glucose. Amylose was detected in seven of the samples, whereas cellulose was found in only one. Possible explanations for the relatively high levels of free sugars are suggested in the conclusions to this chapter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The majority of the basalts drilled on Leg 65 in the Gulf of California are aphyric to sparsely phyric massive flows ranging in average thickness between 5 meters in the upper part of the sections in Holes 483 and 483B, where they are interlayered with sediment, and 14 meters in Hole 485A, where interlayered sediments constitute more than half of the section. Massive flows interlayered with pillows are generally less than 4 meters thick. The pillow lavas recovered are more phyric (up to 15 modal%) and contain two to three generations of plagioclase and olivine ± clinopyroxene. Plagioclase generally exceeds 60% of any given phenocryst assemblage. Resorbed olivine, clinopyroxene, and plagioclase megacrysts may reflect a high-pressure stage, the phenocrysts crystallizing in the main magma chamber and the skeletal microphenocrysts in dikes. Precise measurements of length/width ratios of different phenocryst types and compositions show low aspect ratios and large crystal volumes for early crystals and high ratios and low volumes for late crystals grown under strong undercooling conditions. The minerals examined show wide ranges in composition: in particular, plagioclase ranges from An92 to An36; clinopyroxene ranges from Ca41Mg51Fe8 in the cores of phenocrysts to Ca40**36 Mg45**49Fe15**20 in the groundmass; and olivine ranges from Fo86 to Fo81. The wide range in mineral compositions, together with evidence of disequilibrium based on textures and comparisons of glass and mineral compositions, indicate complex crystallization histories involving both polybaric crystal fractionation and magma mixing.