968 resultados para Mammary carcinomas
Resumo:
Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Eda leads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh) signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-kappaB (NF-kappaB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.
Resumo:
Both experimental and clinical data show evidence of a correlation between elevated blood levels of carcinoembryonic antigen (CEA) and the development of liver metastases from colorectal carcinomas. However, a cause-effect relationship between these two observations has not been demonstrated. For this reason, we developed a new experimental model to evaluate the possible role of circulating CEA in the facilitation of liver metastases. A CEA-negative subclone from the human colon carcinoma cell line CO115 was transfected either with CEA-cDNA truncated at its 3' end by the deletion of 78 base pairs leading to the synthesis of a secreted form of CEA or with a full-length CEA-cDNA leading to the synthesis of the entire CEA molecule linked to the cell surface by a GPI anchor. Transfectants were selected either for their high CEA secretion (clone CO115-2C2 secreting up to 13 microg CEA per 10(6) cells within 72 h) or for their high CEA membrane expression (clone CO115-5F12 expressing up to 1 x 10(6) CEA molecules per cell). When grafted subcutaneously, CO115-2C2 cells gave rise to circulating CEA levels that were directly related to the tumour volume (from 100 to 1000 ng ml(-1) for tumours ranging from 100 to 1000 mm3), whereas no circulating CEA was detectable in CO115 and CO115-5F12 tumour-bearing mice. Three series of nude mice bearing a subcutaneous xenograft from either clone CO115-2C2 or the CO115-5F12 transfectant, or an untransfected CO115 xenograft, were further challenged for induction of experimental liver metastases by intrasplenic injection of three different CEA-expressing human colorectal carcinoma cell lines (LoVo, LS174T or CO112). The number and size of the liver metastases were shown to be independent of the circulating CEA levels induced by the subcutaneous CEA secreting clone (CO115-2C2), but they were directly related to the metastatic properties of the intrasplenically injected tumour cells.
Resumo:
The recognition of microbial pathogens based on their molecular patterns is essential for host defense. Recently, Toll-like receptors have been shown not only to recognize viruses as well as bacteria and fungi, but also to trigger an efficient immune response. A recent publication proposed that the retrovirus mouse mammary tumor virus exploits the pattern-recognition receptor Toll-like receptor 4 to achieve more efficient infection.
Resumo:
A hundred-sixty paraffin-embedded specimens from female cervical lesions were examined for human papillomavirus (HPV) types 6, 11, 16 and 18 infections by non-isotopic in situ hybridization. The data were compared with histologic diagnosis. Eighty-eight (55) biopsies contained HPV DNA sequences. In low grade cervical intraepithelial neoplasias (CIN I), HPV infection was detected in 78.7 of the cases, the benign HPV 6 was the most prevalent type. HPV DNA was detected in 58 of CIN II and CIN III cases and in 41.8 of squamous cell carcinomas (SCC). Histologically normal women presented 20 of HPV infection. Oncogenic HPV was found in 10 of these cases, what may indicate a higher risk of developing CINs and cancer. Twenty-five percent of the infected tissues contained mixed infections. HPV 16 was the most common type infecting the cervix and its prevalence raised significantly with the severity of the lesions, pointing its role in cancer pathogenesis. White women presented twice the cervical lesions of mulatto and African origin women, although HPV infection rates were nearly the same for the three groups (approximately 50). Our results showed that HPV typing by in situ hybridization is a useful tool for distinguishing between low and high risk cervical lesions. Further studies are required to elucidate risk factors associated with HPV infection and progression to malignancy in Brazilian population.
Resumo:
PURPOSE: Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. EXPERIMENTAL DESIGN: We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. RESULTS: TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. CONCLUSIONS: These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. Clin Cancer Res; 19(13); 3439-49. ©2013 AACR.
Resumo:
A glucocorticoid-responsive vector is described which allows for the highly inducible expression of complementary DNAs (cDNAs) in stably transfected mammalian cell lines. This vector, pLK-neo, composed of a variant mouse mammary tumor virus long terminal repeat promoter, containing a hormone regulatory element, a Geneticin resistance-encoding gene in a simian virus 40 transcription unit, and a polylinker insertion site for heterologous cDNAs, was used to express the polymeric immunoglobulin (poly-Ig) receptor and the thymocyte marker, Thy-1, in Madin-Darby canine kidney (MDCK) cells and in murine fibroblast L cells. A high level of poly-Ig receptor or Thy-1 mRNA accumulation was observed in MDCK cells in response to dexamethasone with a parallel ten- to 200-fold increase in protein synthesis depending on the recombinant protein and the transfected cell clone.
Resumo:
Pancreatic cancer is one of the most lethal forms of human cancer. Although progress in oncology has improved outcomes in many forms of cancer, little progress has been made in pancreatic carcinoma and the prognosis of this malignancy remains grim. Several molecular abnormalities often present in pancreatic cancer have been defined and include mutations in K-ras, p53, p16, and DPC4 genes. Nuclear receptor Peroxisome Proliferator-Activated Receptor gamma (PPARγ) has a role in many carcinomas and has been found to be overexpressed in pancreatic cancer. It plays generally a tumor suppressor role antagonizing proteins promoting carcinogenesis such as NF-κB and TGFβ. Regulation of pathways involved in pancreatic carcinogenesis is effectuated by the Ubiquitin Proteasome System (UPS). This paper will examine PPARγ in pancreatic cancer, the regulation of this nuclear receptor by the UPS, and their relationship to other pathways important in pancreatic carcinogenesis.
Resumo:
Carcinoembryonic antigen (CEA) is a tumor marker defined by specific heterologous antisera. Elevated levels of circulating CEA can be detected by radioimmunoassay in most cases of colorectal carcinoma, depending on the degree of tumor spread. The fact that elevation of CEA level can also be observed in other types of carcinomas and in several nonmalignant conditions greatly limits the value of the CEA test for the early diagnosis of colorectal carcinomas. Repeated CEA measurements and their critical interpretation, however, appear to be of importance after tumor resection for the detection of tumor recurrence during the postoperative follow-up period.
Resumo:
Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γδ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor.
Resumo:
The Notch1 gene has an important role in mammalian cell-fate decision and tumorigenesis. Upstream control mechanisms for transcription of this gene are still poorly understood. In a chemical genetics screen for small molecule activators of Notch signalling, we identified epidermal growth factor receptor (EGFR) as a key negative regulator of Notch1 gene expression in primary human keratinocytes, intact epidermis and skin squamous cell carcinomas (SCCs). The underlying mechanism for negative control of the Notch1 gene in human cells, as well as in a mouse model of EGFR-dependent skin carcinogenesis, involves transcriptional suppression of p53 by the EGFR effector c-Jun. Suppression of Notch signalling in cancer cells counteracts the differentiation-inducing effects of EGFR inhibitors while, at the same time, synergizing with these compounds in induction of apoptosis. Thus, our data reveal a key role of EGFR signalling in the negative regulation of Notch1 gene transcription, of potential relevance for combinatory approaches for cancer therapy.
Resumo:
Estrogens and progesterones are major drivers of breast development but also promote carcinogenesis in this organ. Yet, their respective roles and the mechanisms underlying their action in the human breast are unclear. Receptor activator of nuclear factor κB ligand (RANKL) has been identified as a pivotal paracrine mediator of progesterone function in mouse mammary gland development and mammary carcinogenesis. Whether the factor has the same role in humans is of clinical interest because an inhibitor for RANKL, denosumab, is already used for the treatment of bone disease and might benefit breast cancer patients. We show that progesterone receptor (PR) signaling failed to induce RANKL in PR(+) breast cancer cell lines and in dissociated, cultured breast epithelial cells. In clinical specimens from healthy donors and intact breast tissue microstructures, hormone response was maintained and RANKL expression was under progesterone control, which increased RNA stability. RANKL was sufficient to trigger cell proliferation and was required for progesterone-induced proliferation. The findings were validated in vivo where RANKL protein expression in the breast epithelium correlated with serum progesterone levels and the protein was expressed in a subset of luminal cells that express PR. Thus, important hormonal control mechanisms are conserved across species, making RANKL a potential target in breast cancer treatment and prevention.
Resumo:
Introducció: Els factors predictius patològics vigents per al carcinoma de cèl•lules renals cromòfob (CCRC) mantenen gran controvèrsia en la actualitat, sent la utilitat de la classificació del grau nuclear Fuhrman per a aquest subtipus histològic un dels factors més qüestionats. Objectiu: Avaluar la utilitat pronòstica dels actuals factors patològics predictius a la nostra sèrie de carcinomes de cèl•lules renals tipus cromòfob. Materials i metodologia: Realitzarem una revisió retrospectiva dels paràmetres clínico-patològics de pacients portats a nefrectomia radical per CCRC. Les característiques clínico-patològiques analitzades van ser l’estadi TNM, grau Fuhrman, invasió microvascular, necrosi tumoral, trombus tumoral, marges quirúrgics positius, invasió del greix perinefrític i compromís del sistema col•lector. Resultats: En l’anàlisi multivariant només l’estadi tumoral es va confirmar com a factor predictiu independent de recurrència. Conclusions: l’estadi tumoral prediu agressivitat en el CCR cromòfob. La classificació de grau nuclear de Fuhrman no és útil en aquest subtipus histològic.
Resumo:
The identity of minor lymphocytes stimulating (Mls) antigens, endogenous superantigens that can activate, or induce the deletion of, large portions of the T-cell repertoire, has recently been revealed: they are encoded by mouse mammary tumor viruses (MMTV) that have integrated into the germ line as DNA proviruses. As Hans Acha-Orbea and Ed Palmer point out, Mls-mediated modulation may be only the tip of the retrovirus iceberg; already murine leukemia virus (MuLV), with similar superantigen properties, has been discovered.
Resumo:
Els carcinomes de cèl•lules escamoses de cap i coll (CCECC) estan relacionats en un 80% dels casos amb el tabac i/o l’alcohol. Per altra banda, la infecció per virus papil•loma humà (VPH), la malaltia de transmissió sexual més freqüent als Estats Units actualment, ha resultat ser oncogènica no només a nivell genital sinó també a nivell del tracte aero-digestiu superior, sobretot a oro-faringe. Els estudis realitzats a posteriori han demostrat que els pacients amb CCECC VPH+ no fumadors ni bebedors, solen ser més joves, presentar diferents marcadors tumorals, respondre més al tractament i tenir millor pronòstic.
Resumo:
Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe beta-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the beta-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased beta-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/beta-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.