986 resultados para Male rats
Resumo:
Glutamate receptors have been implicated in memory formation. The aim of the present study was to determine the effect of inhibitory avoidance training on specific [3H]-glutamate binding to membranes obtained from the hippocampus or parietal cortex of rats. Adult male Wistar rats were trained (0.5-mA footshock) in a step-down inhibitory avoidance task and were sacrificed 0, 5, 15 or 60 min after training. Hippocampus and parietal cortex were dissected and membranes were prepared and incubated with 350 nM [3H]-glutamate (N = 4-6 per group). Inhibitory avoidance training induced a 29% increase in glutamate binding in hippocampal membranes obtained from rats sacrificed at 5 min (P<0.01), but not at 0, 15, or 60 min after training, and did not affect glutamate binding in membranes obtained from the parietal cortex. These results are consistent with previous evidence for the involvement of glutamatergic synaptic modification in the hippocampus in the early steps of memory formation.
Resumo:
The morphology of the rat lung was studied by light microscopy in different situations: after surgical and pharmacological castration and after administration of testosterone to the castrated rat to determine if the androgen is required to maintain the normal morphology of the lung. We also determined the effect of flutamide on the phospholipid composition of both the surfactant and microsomes of the lung. Rats were separated into five groups: I - control non-castrated rats, II - castrated rats sacrificed 21 days after castration, III - castrated rats that received testosterone daily from day 2 to day 21 after castration, IV - castrated rats that received testosterone from day 15 to day 21 after castration, and V - control rats injected with flutamide for 7 days. The amount of different phospholipids in the surfactant and microsomes of the lung was measured in group I and V rats. At the light microscopy level, the surgical and pharmacological castration provoked alterations in the morphology of the lung, similar to that observed in human lung emphysema. The compositions of surfactant and microsomes of the lung were similar to those previously reported by us for the surgically castrated rats. These results indicate that androgens are necessary for the normal morphology as well as for some metabolic aspects of the lung.
Resumo:
The role of sympathetic nerve activity in the changes in arterial blood pressure and renal function caused by the chronic administration of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, was examined in sham and bilaterally renal denervated rats. Several studies have demonstrated that sympathetic nerve activity is elevated acutely after L-NAME administration. To evaluate the role of renal nerve activity in L-NAME-induced hypertension, we compared the blood pressure response in four groups (N = 10 each) of male Wistar-Hannover rats weighing 200 to 250 g: 1) sham-operated vehicle-treated, 2) sham-operated L-NAME-treated, 3) denervated vehicle-treated, and 4) denervated L-NAME-treated rats. After renal denervation or sham surgery, one control week was followed by three weeks of oral administration of L-NAME by gavage. Arterial pressure was measured weekly in conscious rats by a tail-cuff method and renal function tests were performed in individual metabolic cages 0, 7, 14 and 21 days after the beginning of L-NAME administration. L-NAME (60 mg kg-1 day-1) progressively increased arterial pressure from 108 ± 6.0 to 149 ± 12 mmHg (P<0.05) in the sham-operated group by the third week of treatment which was accompanied by a fall in creatinine clearance from 336 ± 18 to 222 ± 59 µl min-1 100 g body weight-1 (P<0.05) and a rise in fractional urinary sodium excretion from 0.2 ± 0.04 to 1.62 ± 0.35% (P<0.05) and in sodium post-proximal fractional excretion from 0.54 ± 0.09 to 4.7 ± 0.86% (P<0.05). The development of hypertension was significantly delayed and attenuated in denervated L-NAME-treated rats. This was accompanied by a striking additional increase in fractional renal sodium and potassium excretion from 0.2 ± 0.04 to 4.5 ± 1.6% and from 0.1 ± 0.015 to 1.21 ± 0.37%, respectively, and an enhanced post-proximal sodium excretion compared to the sham-operated group. These differences occurred despite an unchanged creatinine clearance and Na+ filtered load. These results suggest that bilateral renal denervation delayed and attenuated the L-NAME-induced hypertension by promoting an additional decrease in tubule sodium reabsorption in the post-proximal segments of nephrons. Much of the hypertension caused by chronic NO synthesis inhibition is thus dependent on renal nerve activity.
Effects of exercise training on autonomic and myocardial dysfunction in streptozotocin-diabetic rats
Resumo:
Several investigators have demonstrated that diabetes is associated with autonomic and myocardial dysfunction. Exercise training is an efficient non-pharmacological treatment for cardiac and metabolic diseases. The aim of the present study was to investigate the effects of exercise training on hemodynamic and autonomic diabetic dysfunction. After 1 week of diabetes induction (streptozotocin, 50 mg/kg, iv), male Wistar rats (222 ± 5 g, N = 18) were submitted to exercise training for 10 weeks on a treadmill. Arterial pressure signals were obtained and processed with a data acquisition system. Autonomic function and intrinsic heart rate were studied by injecting methylatropine and propranolol. Left ventricular function was assessed in hearts perfused in vitro by the Langendorff technique. Diabetes (D) bradycardia and hypotension (D: 279 ± 9 bpm and 91 ± 4 mmHg vs 315 ± 11 bpm and 111 ± 4 mmHg in controls, C) were attenuated by training (TD: 305 ± 7 bpm and 100 ± 4 mmHg). Vagal tonus was decreased in the diabetic groups and sympathetic tonus was similar in all animals. Intrinsic heart rate was lower in D (284 ± 11 bpm) compared to C and TD (390 ± 8 and 342 ± 14 bpm, respectively). Peak systolic pressure developed at different pressures was similar for all groups, but +dP/dt max was decreased and -dP/dt max was increased in D. In conclusion, exercise training reversed hypotension and bradycardia and improved myocardial function in diabetic rats. These changes represent an adaptive response to the demands of training, supporting a positive role of physical activity in the management of diabetes.
Resumo:
In the present study we investigated the effect of salt intake on myenteric neuron size of the colon of adult male Wistar rats. The animals were placed on either a high-salt (HS; 8%; 12 animals) or a low-salt diet (LS; 0.15%; 12 animals) for 15 or 52 weeks and blood pressure was measured. The sizes of myenteric neurons of the distal colon from both groups were measured. No difference in neuron size was observed between the HS and LS groups after 15 weeks. After 52 weeks on HS, neuron size was increased (P<0.005) when compared with the LS group. The rats also presented hypertension, which was significantly different at 52 weeks (142 ± 11 vs 119 ± 7 mmHg). These results suggest that a long time on an HS diet can significantly increase myenteric nerve cell size.
Resumo:
The effects of adrenalectomy and adrenal enucleation on liquid gastric emptying were studied in male Wistar rats that were adrenalectomized, adrenal enucleated (AE) or sham operated (SH). The animals in the first group had free access to a 1% NaCl solution (ADS), while the animals in the second and third groups were divided into two subgroups, which ingested either tap water (AEW, SHW) or 1% NaCl solution (AES, SHS). The gastric emptying study was performed on the 16th post-operative day. Three test meals labeled with phenol red (6 mg/dl) were used (0.9% NaCl, 1.8% NaCl and 5% glucose). Percent gastric retention was determined 10 min after orogastric infusion of the NaCl test meals and 15 min after the glucose meal. Gastric retention of the ADS subgroup was significantly lower (P<0.01) (median = 19.8% vs 25.5% for SHW, vs 31.9% for SHS, vs 25.7% for AEW, and vs 27.1% for AES) for the 0.9% NaCl test meal and for the 1.8% NaCl test meal (33.5% for ADS vs 47.5% for AEW and 50.6% for AES). When 5% glucose was used as a test meal, gastric retention was similar for all subgroups. These results suggest that ablation of the adrenal cortex results in increased gastric emptying of an isosmolar NaCl meal.
Resumo:
The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals were sacrificed and the radioactivity remaining in the stomach was determined. Intestinal transit was evaluated by instillation of a technetium-labeled saline bolus (1.0 ml) through a cannula previously implanted in the duodenum. After 60 min, the progression of the marker throughout 7 consecutive gut segments was estimated by the geometric center method. Gastric retention of the liquid test meal in rats injected with scorpion toxin (median: 88%; range: 52-95%) was significantly higher (P<0.02) than in controls (54%; 21-76%), an effect which was not modified by gastric secretion blockade with ranitidine. The progression of the isotope marker throughout the small intestine was significantly slower (P<0.05) in rats treated with toxin (1.2; 1.0-2.5) than in control animals (2.3; 1.0-3.2). Inhibition of both gastric emptying and intestinal transit in rats injected with scorpion toxin suggests an increased resistance to aboral flow, which might be caused by abnormal neurotransmitter release or by the local effects of venom on smooth muscle cells.
Resumo:
Emotional changes can influence feeding behavior. Previous studies have shown that chronically stressed animals present increased ingestion of sweet food, an effect reversed by a single dose of diazepam administered before testing the animals. The aim of the present study was to evaluate the response of animals chronically treated with midazolam and/or submitted to repeated restraint stress upon the ingestion of sweet food. Male adult Wistar rats were divided into two groups: controls and exposed to restraint 1 h/day, 5 days/week for 40 days. Both groups were subdivided into two other groups treated or not with midazolam (0.06 mg/ml in their drinking water during the 40-day treatment). The animals were placed in a lighted area in the presence of 10 pellets of sweet food (Froot loops®). The number of ingested pellets was measured during a period of 3 min, in the presence or absence of fasting. The group chronically treated with midazolam alone presented increased ingestion when compared to control animals (control group: 2.0 ± 0.44 pellets and midazolam group: 3.60 ± 0.57 pellets). The group submitted to restraint stress presented an increased ingestion compared to controls (control group: 2.0 ± 0.44 pellets and stressed group: 4.18 ± 0.58 pellets). Chronically administered midazolam reduced the ingestion in stressed animals (stressed/water group: 4.18 ± 0.58 pellets; stressed/midazolam group: 3.2 ± 0.49 pellets). Thus, repeated stress increases appetite for sweet food independently of hunger and chronic administration of midazolam can decrease this behavioral effect.
Resumo:
The purpose of the present study was to investigate the effects of experimental diabetes on the oxidant and antioxidant status of latissimus dorsi (LD) muscles of male Wistar rats (220 ± 5 g, N = 11). Short-term (5 days) diabetes was induced by a single injection of streptozotocin (STZ, 50 mg/kg, iv; glycemia >300 mg/dl). LD muscle of STZ-diabetic rats presented higher levels of thiobarbituric acid reactive substances (TBARS) and chemiluminescence (0.36 ± 0.02 nmol/mg protein and 14706 ± 1581 cps/mg protein) than LD muscle of normal rats (0.23 ± 0.04 nmol/mg protein and 7389 ± 1355 cps/mg protein). Diabetes induced a 92% increase in catalase and a 27% increase in glutathione S-transferase activities in LD muscle. Glutathione peroxidase activity was reduced (58%) in STZ-diabetic rats and superoxide dismutase activity was similar in LD muscle of both groups. A positive correlation was obtained between catalase activity and the oxidative stress of LD, as evaluated in terms of TBARS (r = 0.78) and by chemiluminescence (r = 0.89). Catalase activity also correlated inversely with glutathione peroxidase activity (r = 0.79). These data suggest that an increased oxidative stress in LD muscle of diabetic rats may be related to skeletal muscle myopathy.
Resumo:
Diabetic patients have a 20% higher risk of depression than the general population. Treatment with antidepressant drugs can directly interfere with blood glucose levels or may interact with hypoglycemic agents. The treatment of depression in diabetic patients must take into account variations of glycemic levels at different times and a comparison of the available antidepressant agents is important. In the present study we evaluated the interference of antidepressants with blood glucose levels of diabetic and non-diabetic rats. In a first experiment, male adult Wistar rats were fasted for 12 h. Imipramine (5 mg/kg), moclobemide (30 mg/kg), clonazepam (0.25 mg/kg), fluoxetine (20 mg/kg) sertraline (30 mg/kg) or vehicle was administered. After 30 min, fasting glycemia was measured. An oral glucose overload of 1 ml of a 50% glucose solution was given to rats and blood glucose was determined after 30, 60 and 90 min. Imipramine and clonazepam did not change fasting or overload glycemia. Fluoxetine and moclobemide increased blood glucose at different times after the glucose overload. Sertraline neutralized the increase of glycemia induced by oral glucose overload. In the second experiment, non-diabetic and streptozotocin-induced diabetic rats were fasted, and the same procedures were followed for estimation of glucose tolerance 30 min after glucose overload. Again, sertraline neutralized the increase in glycemia after glucose overload both in diabetic and non-diabetic rats. These data raise the question of whether sertraline is the best choice for prolonged use for diabetic individuals, because of its antihyperglycemic effects. Clonazepam would be useful in cases with potential risk of hypoglycemia.
Resumo:
Bradykinin has been reported to act as a growth factor for fibroblasts, mesangial cells and keratinocytes. Recently, we reported that bradykinin augments liver regeneration after partial hepatectomy in rats. Angiotensin-converting enzyme (ACE) is also a powerful bradykinin-degrading enzyme. We have investigated the effect of ACE inhibition by lisinopril on liver regeneration after partial hepatectomy. Adult male Wistar rats underwent 70% partial hepatectomy (PH). The animals received lisinopril at a dose of 1 mg kg body weight-1 day-1, or saline solution, intraperitoneally, for 5 days before hepatectomy, and daily after surgery. Four to six animals from the lisinopril and saline groups were sacrificed at 12, 24, 36, 48, 72, and 120 h after PH. Liver regeneration was evaluated by immunohistochemical staining for proliferating cell nuclear antigen using the PC-10 monoclonal antibody. The value for the lisinopril-treated group was three-fold above the corresponding control at 12 h after PH (P<0.001), remaining elevated at approximately two-fold above control values at 24, 36, 48 (P<0.001), and at 72 h (P<0.01) after PH, but values did not reach statistical difference at 120 h after PH. Plasma ACE activity measured by radioenzymatic assay was significantly higher in the saline group than in the lisinopril-treated group (P<0.001), with 81% ACE inhibition. The present study shows that plasma ACE inhibition enhances liver regeneration after PH in rats. Since it was reported that bradykinin also augments liver regeneration after PH, this may explain the liver growth stimulating effect of ACE inhibitors.
Resumo:
Increased fighting is an effect of desynchronized sleep deprivation (DSD) in rats, and recently this behavior has been suggested to be spontaneous panic and equivalent to panic disorder. In the present study we tested this hypothesis by evaluating the effect of sodium lactate on this aggressiveness, because this substance is recognized to induce spontaneous panic attacks in patients. A total of 186 male albino Wistar rats, 250-350 g, 90-120 days of age, were submitted to DSD (multiple platform method) for 0, 4, or 5 days. At the end of the deprivation period the rats were divided into subgroups respectively injected intraperitoneally with 1.86, 2.98 and 3.72 g/kg of 1 M sodium lactate, or 1.86 and 3.72 g/kg of 2 M sodium lactate. The control animals were submitted to the same procedures but received equivalent injections of sodium chloride. Regardless of DSD time, sleep-deprived animals that received sodium lactate presented a significantly higher mean number of fights (0.13 ± 0.02 fights/min) and a longer mean time spent in confrontation (2.43 ± 0.66 s/min) than the controls (0.01 ± 0.006 fights/min and 0.12 ± 0.07 s/min, respectively; P<0.01, Student t-test). For the sodium lactate group, concentration of the solution and time of deprivation increased the number of fights, with the mean number of fights and mean duration of fighting episodes being greater with the 2.98 g/kg dose using 1 M lactate concentration. These results support the hypothesis that fighting induced by DSD is probably a spontaneous panic manifestation. However, additional investigations are necessary in order to accept this as a promising animal model for studies on panic disorder.
Resumo:
Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%). Removal of the gonads in both males and females (comparison between castrated groups) increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48%) CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.
Resumo:
Rats fed a high-fructose diet represent an animal model for insulin resistance and hypertension. We recently showed that a high-fructose diet containing vegetable oil but a normal sodium/potassium ratio induced mild insulin resistance with decreased insulin receptor substrate-1 tyrosine phosphorylation in the liver and muscle of normal rats. In the present study, we examined the mean blood pressure, serum lipid levels and insulin sensitivity by estimating in vivo insulin activity using the 15-min intravenous insulin tolerance test (ITT, 0.5 ml of 6 µg insulin, iv) followed by calculation of the rate constant for plasma glucose disappearance (Kitt) in male Wistar-Hannover rats (110-130 g) randomly divided into four diet groups: control, 1:3 sodium/potassium ratio (R Na:K) diet (C 1:3 R Na:K); control, 1:1 sodium/potassium ratio diet (CNa 1:1 R Na:K); high-fructose, 1:3 sodium/potassium ratio diet (F 1:3 R Na:K), and high-fructose, 1:1 sodium/potassium ratio diet (FNa 1:1 R Na:K) for 28 days. The change in R Na:K for the control and high-fructose diets had no effect on insulin sensitivity measured by ITT. In contrast, the 1:1 R Na:K increased blood pressure in rats receiving the control and high-fructose diets from 117 ± 3 and 118 ± 3 mmHg to 141 ± 4 and 132 ± 4 mmHg (P<0.05), respectively. Triacylglycerol levels were higher in both groups treated with a high-fructose diet when compared to controls (C 1:3 R Na:K: 1.2 ± 0.1 mmol/l vs F 1:3 R Na:K: 2.3 ± 0.4 mmol/l and CNa 1:1 R Na:K: 1.2 ± 0.2 mmol/l vs FNa 1:1 R Na:K: 2.6 ± 0.4 mmol/l, P<0.05). These data suggest that fructose alone does not induce hyperinsulinemia or hypertension in rats fed a normal R Na:K diet, whereas an elevation of sodium in the diet may contribute to the elevated blood pressure in this animal model.
Resumo:
Ketamine is believed to reduce airway and pulmonary tissue resistance. The aim of the present study was to determine the effects of ketamine on the resistive, elastic and viscoelastic/inhomogeneous mechanical properties of the respiratory system, lungs and chest wall, and to relate the mechanical data to findings from histological lung analysis in normal animals. Fifteen adult male Wistar rats were assigned randomly to two groups: control (N = 7) and ketamine (N = 8). All animals were sedated (diazepam, 5 mg, ip) and anesthetized with pentobarbital sodium (20 mg/kg, ip) or ketamine (30 mg/kg, ip). The rats were paralyzed and ventilated mechanically. Ketamine increased lung viscoelastic/inhomogeneous pressure (26%) compared to the control group. Dynamic and static elastances were similar in both groups, but the difference was greater in the ketamine than in the control group. Lung morphometry demonstrated dilation of alveolar ducts and increased areas of alveolar collapse in the ketamine group. In conclusion, ketamine did not act at the airway level but acted at the lung periphery increasing mechanical inhomogeneities possibly resulting from dilation of distal airways and alveolar collapse.